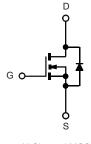

## FZ48-VB Datasheet N-Channel 60-V (D-S) MOSFET


| PRODUCT             | SUMMARY                                |                                 |
|---------------------|----------------------------------------|---------------------------------|
| V <sub>DS</sub> (V) | <b>R<sub>DS(on)</sub> (</b> Ω <b>)</b> | I <sub>D</sub> (A) <sup>a</sup> |
| 60                  | 0.011 at V <sub>GS</sub> = 10 V        | 60                              |
| 00                  | 0.013 at V <sub>GS</sub> = 4.5 V       | 50                              |

#### FEATURES

- 175 °C Junction Temperature
- TrenchFET<sup>®</sup> Power MOSFET
- Material categorization:







N-Channel MOSFET

| ABSOLUTE MAXIMUM RATINGS (T <sub>C</sub> = 25                   | 5 °C, unless otherv     | vise noted)                       |                                      |      |
|-----------------------------------------------------------------|-------------------------|-----------------------------------|--------------------------------------|------|
| Parameter                                                       |                         | Symbol                            | Limit                                | Unit |
| Gate-Source Voltage                                             |                         | V <sub>GS</sub>                   | ± 20                                 | V    |
| $C_{\text{extrimute}} = 0$                                      | T <sub>C</sub> = 25 °C  | In -                              | 60                                   |      |
| Continuous Drain Current (T <sub>J</sub> = 175 °C) <sup>b</sup> | T <sub>C</sub> = 100 °C |                                   | 50ª                                  |      |
| Pulsed Drain Current                                            | I <sub>DM</sub>         | 200                               | A                                    |      |
| Continuous Source Current (Diode Conduction)                    |                         | I <sub>S</sub>                    | 50ª                                  |      |
| Avalanche Current                                               |                         | I <sub>AS</sub>                   | 50                                   |      |
| Single Avalanche Energy (Duty Cycle $\leq$ 1 %)                 | L = 0.1 mH              | E <sub>AS</sub>                   | 125                                  | mJ   |
| Maximum Power Dissipation                                       | T <sub>C</sub> = 25 °C  | Pn -                              | 136                                  | w    |
|                                                                 | T <sub>A</sub> = 25 °C  |                                   | 3 <sup>b</sup> , 8.3 <sup>b, c</sup> | V    |
| Operating Junction and Storage Temperature Range                |                         | T <sub>J</sub> , T <sub>stg</sub> | - 55 to 175                          | °C   |

| THERMAL RESISTANCE RATINGS               |                        |                   |         |         |      |  |
|------------------------------------------|------------------------|-------------------|---------|---------|------|--|
| Parameter                                |                        | Symbol            | Typical | Maximum | Unit |  |
|                                          | $t \le 10 \text{ sec}$ | R <sub>thJA</sub> | 15      | 18      |      |  |
| Maximum Junction-to-Ambient <sup>a</sup> | Steady State           |                   | 40      | 50      | °C/W |  |
| Maximum Junction-to-Case                 |                        | R <sub>thJC</sub> | 0.85    | 1.1     |      |  |

Notes:

a. Package limited.

b. Surface mounted on 1" x 1" FR4 board.

c.  $t \leq 10$  s.

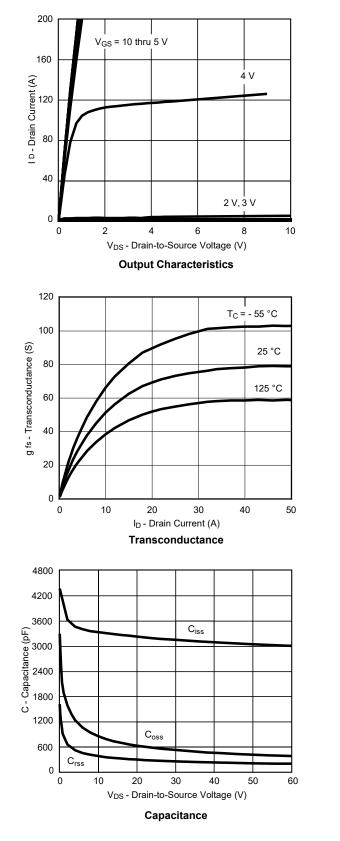
| $\begin{array}{ c c c c } \hline Parameter & Symbol & Test Conditions & I \\ \hline Static & & & & \\ \hline Drain-Source Breakdown Voltage & V_{DS} & V_{GS} = 0 \ V, \ I_D = 250 \ \mu A & & \\ \hline Gate Threshold Voltage & V_{DS} & V_{DS} = V_{GS}, \ I_D = 250 \ \mu A & & \\ \hline Gate-Body \ Leakage & I_{GSS} & V_{DS} = 0 \ V, \ V_{GS} = \pm 20 \ V & \\ \hline Cate - Body \ Leakage & I_{GSS} & V_{DS} = 0 \ V, \ V_{GS} = \pm 20 \ V & \\ \hline Cate - Body \ Leakage & I_{GSS} & V_{DS} = 0 \ V, \ V_{GS} = \pm 20 \ V & \\ \hline V_{DS} = 60 \ V, \ V_{GS} = 0 \ V, \ T_J = 125 \ ^{\circ}C & \\ \hline V_{DS} = 60 \ V, \ V_{GS} = 0 \ V, \ T_J = 125 \ ^{\circ}C & \\ \hline V_{DS} = 60 \ V, \ V_{GS} = 0 \ V, \ T_J = 175 \ ^{\circ}C & \\ \hline V_{DS} = 60 \ V, \ V_{GS} = 0 \ V, \ T_J = 175 \ ^{\circ}C & \\ \hline V_{DS} = 10 \ V, \ I_D = 20 \ A & \\ \hline V_{GS} = 10 \ V, \ I_D = 20 \ A & \\ \hline V_{GS} = 10 \ V, \ I_D = 20 \ A & \\ \hline V_{GS} = 10 \ V, \ I_D = 20 \ A & \\ \hline V_{GS} = 10 \ V, \ I_D = 20 \ A & \\ \hline V_{GS} = 10 \ V, \ I_D = 20 \ A & \\ \hline V_{GS} = 10 \ V, \ I_D = 15 \ A & \\ \hline Dynamic & & \\ \hline Input \ Capacitance & C_{iss} & \\ \hline Output \ Capacitance & C_{iss} & \\ \hline Output \ Capacitance & C_{iss} & \\ \hline Total \ Gate \ Charge^{\circ} & Q_g & \\ \hline Gate-Source \ Charge^{\circ} & Q_g & \\ \hline Gate-Source \ Charge^{\circ} & Q_g & \\ \hline Turn-On \ Delay \ Time^{\circ} & t_{d(off)} & \\ \hline Rise \ Time^{\circ} & t_{d(off)} & \\ \hline Rise \ Time^{\circ} & t_{f} & \\ \hline Murce \ Charge & t_{f} & \\ \hline Source-Drain \ Diode \ Ratings \ and \ Characteristics \ (T_C = 25 \ ^{\circ}C) & \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |       |                                       |      |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|---------------------------------------|------|--|
| $\begin{array}{c c c c c c } \mbox{Drain-Source Breakdown Voltage} & V_{DS} & V_{DS} = 0 \ V, \ I_D = 250 \ \mu A & I_D \\ \hline Gate Threshold Voltage & I_{GSC} & V_{DS} = 0 \ V, \ V_{DS} = 250 \ \mu A & I_D \\ \hline Gate-Body \ Leakage & I_{GSS} & V_{DS} = 0 \ V, \ V_{GS} = 20 \ V & V_{DS} = 60 \ V, \ V_{GS} = 0 \ V & V_{DS} = 60 \ V, \ V_{GS} = 0 \ V & V_{DS} = 60 \ V, \ V_{GS} = 0 \ V & V_{DS} = 60 \ V, \ V_{GS} = 0 \ V, \ T_J = 125 \ ^{\circ}C & V_{DS} = 60 \ V, \ V_{GS} = 0 \ V, \ T_J = 175 \ ^{\circ}C & V_{DS} = 60 \ V, \ V_{GS} = 10 \ V, \ I_D = 20 \ A & V_{GS} = 10 \ V & V_{DS} = 50 \ V, \ V_{GS} = 10 \ V, \ I_D = 20 \ A & V_{GS} = 10 \ V, \ I_D = 20 \ A, \ T_J = 125 \ ^{\circ}C & V_{GS} = 10 \ V, \ I_D = 20 \ A, \ T_J = 175 \ ^{\circ}C & V_{GS} = 10 \ V, \ I_D = 20 \ A, \ T_J = 175 \ ^{\circ}C & V_{GS} = 10 \ V, \ I_D = 20 \ A, \ T_J = 175 \ ^{\circ}C & V_{GS} = 10 \ V, \ I_D = 20 \ A, \ T_J = 175 \ ^{\circ}C & V_{GS} = 10 \ V, \ I_D = 20 \ A, \ T_J = 175 \ ^{\circ}C & V_{GS} = 10 \ V, \ I_D = 20 \ A, \ T_J = 175 \ ^{\circ}C & V_{GS} = 10 \ V, \ I_D = 20 \ A, \ T_J = 175 \ ^{\circ}C & V_{GS} = 10 \ V, \ I_D = 20 \ A, \ T_J = 175 \ ^{\circ}C & V_{GS} = 10 \ V, \ I_D = 20 \ A, \ T_J = 175 \ ^{\circ}C & V_{GS} = 10 \ V, \ I_D = 20 \ A, \ T_J = 175 \ ^{\circ}C & V_{GS} = 10 \ V, \ I_D = 20 \ A, \ T_J = 175 \ ^{\circ}C & V_{GS} = 10 \ V, \ I_D = 20 \ A, \ T_J = 175 \ ^{\circ}C & V_{GS} = 10 \ V, \ I_D = 20 \ A & V_{GS} = 10 \ V, \ I_D = 20 \ A & V_{GS} = 10 \ V, \ I_D = 20 \ A & V_{GS} = 10 \ V, \ I_D = 20 \ A & V_{GS} = 10 \ V, \ I_D = 20 \ A & V_{GS} = 0 \ V, \ V_{DS} = 25 \ V, \ f = 1 \ MHz & A \ A \ A \ A \ A \ A \ A \ A \ A \ A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Min. | Typ.ª | Max.                                  | Unit |  |
| $ \begin{array}{c c c c c } \hline Gate Threshold Voltage & V_{GS(th)} & V_{DS} = V_{GS}, I_D = 250 \ \mu A \\ \hline Gate-Body Leakage & I_{GSS} & V_{DS} = 0 \ V, V_{GS} = \pm 20 \ V \\ \hline V_{DS} = 60 \ V, V_{GS} = 0 \ V, V_{GS} = 0 \ V \\ \hline V_{DS} = 60 \ V, V_{GS} = 0 \ V, \ I_J = 125 \ ^{\circ}C \\ \hline V_{DS} = 60 \ V, V_{GS} = 0 \ V, \ I_J = 125 \ ^{\circ}C \\ \hline V_{DS} = 60 \ V, V_{GS} = 0 \ V, \ I_J = 125 \ ^{\circ}C \\ \hline V_{DS} = 60 \ V, V_{GS} = 0 \ V, \ I_J = 125 \ ^{\circ}C \\ \hline V_{DS} = 60 \ V, \ V_{GS} = 0 \ V, \ I_J = 125 \ ^{\circ}C \\ \hline V_{DS} = 60 \ V, \ V_{GS} = 0 \ V, \ I_J = 125 \ ^{\circ}C \\ \hline V_{DS} = 60 \ V, \ V_{GS} = 10 \ V, \ I_J = 125 \ ^{\circ}C \\ \hline V_{DS} = 10 \ V, \ I_D = 20 \ A, \ I_J = 125 \ ^{\circ}C \\ \hline V_{GS} = 10 \ V, \ I_D = 20 \ A, \ I_J = 125 \ ^{\circ}C \\ \hline V_{GS} = 10 \ V, \ I_D = 20 \ A, \ I_J = 125 \ ^{\circ}C \\ \hline V_{GS} = 10 \ V, \ I_D = 20 \ A, \ I_J = 125 \ ^{\circ}C \\ \hline V_{GS} = 10 \ V, \ I_D = 20 \ A, \ I_J = 125 \ ^{\circ}C \\ \hline V_{GS} = 10 \ V, \ I_D = 20 \ A, \ I_J = 125 \ ^{\circ}C \\ \hline V_{GS} = 10 \ V, \ I_D = 20 \ A, \ I_J = 175 \ ^{\circ}C \\ \hline V_{GS} = 10 \ V, \ I_D = 20 \ A \ I_J = 175 \ ^{\circ}C \\ \hline V_{GS} = 10 \ V, \ I_D = 20 \ A \ I_J = 175 \ ^{\circ}C \\ \hline V_{GS} = 10 \ V, \ I_D = 20 \ A \ I_J = 175 \ ^{\circ}C \\ \hline V_{GS} = 10 \ V, \ I_D = 20 \ A \ I_J = 175 \ ^{\circ}C \\ \hline \hline Dynamic \ Input \ Capacitance \ C_{iss} \\ \hline Output \ Capacitance \ C_{iss} \\ \hline Output \ Capacitance \ C_{iss} \\ \hline Cotal \ Gate \ Charge^{\circ} \ Q_{g} \\ \hline Gate \ Source \ Charge^{\circ} \ Q_{g} \\ \hline Gate \ Source \ Charge^{\circ} \ Q_{g} \\ \hline Gate \ Charge^{\circ} \ Q_{g} \\ \hline Gate \ Charge^{\circ} \ Q_{g} \\ \hline Gate \ Charge^{\circ} \ Q_{g} \\ \hline Turn-On \ Delay \ Time^{\circ} \ I_t \ I_{d(on)} \\ \hline Rise \ Time^{\circ} \ I_t \ V_{DD} = 30 \ V, \ R_L = 0.6 \ \Omega \\ \hline \hline Rise \ Time^{\circ} \ I_t \ V_{GS} = 10 \ V, \ R_g = 2.5 \ \Omega \\ \hline \hline Fall \ Time^{\circ} \ I_t \ I_{d(off)} \ I_f \ I_{d(off)} \hline I_f \ I_f $ |      |       | · I                                   |      |  |
| $ \begin{array}{c c} \mbox{Gate-Body Leakage} & I_{GSS} & V_{DS} = 0 \ V, \ V_{GS} = \pm 20 \ V \\ V_{DS} = 60 \ V, \ V_{GS} = 0 \ V \\ V_{DS} = 60 \ V, \ V_{GS} = 0 \ V \\ V_{DS} = 60 \ V, \ V_{GS} = 0 \ V, \ U_{J} = 125 \ ^{\circ}C \\ \hline V_{DS} = 60 \ V, \ V_{GS} = 0 \ V, \ U_{J} = 125 \ ^{\circ}C \\ \hline V_{DS} = 60 \ V, \ V_{GS} = 0 \ V, \ U_{J} = 175 \ ^{\circ}C \\ \hline V_{DS} = 60 \ V, \ V_{GS} = 10 \ V \\ \hline V_{DS} = 5 \ V, \ V_{GS} = 10 \ V \\ \hline V_{DS} = 5 \ V, \ V_{GS} = 10 \ V \\ \hline V_{GS} = 10 \ V, \ I_{D} = 20 \ A \\ \hline V_{GS} = 10 \ V, \ I_{D} = 20 \ A, \ T_{J} = 125 \ ^{\circ}C \\ \hline V_{GS} = 10 \ V, \ I_{D} = 20 \ A, \ T_{J} = 125 \ ^{\circ}C \\ \hline V_{GS} = 10 \ V, \ I_{D} = 20 \ A, \ T_{J} = 125 \ ^{\circ}C \\ \hline V_{GS} = 10 \ V, \ I_{D} = 20 \ A, \ T_{J} = 125 \ ^{\circ}C \\ \hline V_{GS} = 10 \ V, \ I_{D} = 20 \ A, \ T_{J} = 125 \ ^{\circ}C \\ \hline V_{GS} = 10 \ V, \ I_{D} = 20 \ A, \ T_{J} = 125 \ ^{\circ}C \\ \hline V_{GS} = 10 \ V, \ I_{D} = 20 \ A, \ T_{J} = 125 \ ^{\circ}C \\ \hline V_{GS} = 10 \ V, \ I_{D} = 20 \ A, \ T_{J} = 125 \ ^{\circ}C \\ \hline V_{GS} = 10 \ V, \ I_{D} = 20 \ A, \ T_{J} = 175 \ ^{\circ}C \\ \hline V_{GS} = 10 \ V, \ I_{D} = 20 \ A \\ \hline Dynamic \\ \hline Dynamic \\ \hline Dutput \ Capacitance \ C_{iss} \\ \hline Output \ Capacitance \ C_{iss} \\ \hline Output \ Capacitance \ C_{iss} \\ \hline Cotal \ Gate-Drain \ Charge^{\circ} \ Q_{g} \\ \hline Cater \ Charge^{\circ} \ Q_{g} \\ \hline Turn-On \ Delay \ Time^{\circ} \ t_{d(on)} \\ \hline Rise \ Time^{\circ} \ t_{d(on)} \\ \hline Rise \ Time^{\circ} \ t_{d(on)} \\ \hline Rise \ Time^{\circ} \ t_{d(off)} \\ \hline Fall \ Time^{\circ} \ t_{f} \\ \hline \ V_{DD} = 30 \ V, \ R_{L} = 0.6 \ \Omega \\ \hline \ D(Turn-Off \ Delay \ Time^{\circ} \ t_{d(off)} \\ \hline \ Turn-Off \ Delay \ Time^{\circ} \ t_{f} \\ \hline \ V_{DD} = 50 \ A, \ V_{GEN} = 10 \ V, \ R_{g} = 2.5 \ \Omega \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$                                                                                                                                                                                                                                                                                         | 60   |       |                                       | V    |  |
| $ \begin{array}{c c c c c c c } Zero Gate Voltage Drain Current \\ I_{DSS} \\ \hline V_{DS} = 60 V, V_{GS} = 0 V, T_J = 125 \ ^{\circ}C \\ \hline V_{DS} = 60 V, V_{GS} = 0 V, T_J = 125 \ ^{\circ}C \\ \hline V_{DS} = 60 V, V_{GS} = 0 V, T_J = 175 \ ^{\circ}C \\ \hline V_{DS} = 60 V, V_{GS} = 0 V, T_J = 175 \ ^{\circ}C \\ \hline V_{DS} = 60 V, V_{GS} = 10 V \\ \hline V_{DS} = 60 V, V_{GS} = 10 V \\ \hline V_{DS} = 5 V, V_{GS} = 10 V \\ \hline V_{DS} = 5 V, V_{GS} = 10 V \\ \hline V_{DS} = 10 V, I_D = 20 A \\ \hline V_{GS} = 10 V, I_D = 20 A, T_J = 125 \ ^{\circ}C \\ \hline V_{GS} = 10 V, I_D = 20 A, T_J = 175 \ ^{\circ}C \\ \hline V_{GS} = 10 V, I_D = 20 A, T_J = 175 \ ^{\circ}C \\ \hline V_{GS} = 10 V, I_D = 20 A, T_J = 175 \ ^{\circ}C \\ \hline V_{GS} = 10 V, I_D = 20 A, T_J = 175 \ ^{\circ}C \\ \hline V_{GS} = 10 V, I_D = 20 A, T_J = 175 \ ^{\circ}C \\ \hline V_{GS} = 10 V, I_D = 20 A, T_J = 175 \ ^{\circ}C \\ \hline V_{GS} = 10 V, I_D = 20 A, T_J = 175 \ ^{\circ}C \\ \hline V_{GS} = 10 V, I_D = 20 A \\ \hline Dynamic \\ \hline Dynamic \\ \hline Dynamic \\ \hline Input Capacitance \\ C_{iss} \\ \hline Output Capacitance \\ C_{iss} \\ \hline Output Capacitance \\ C_{rss} \\ \hline Total Gate Charge^{\circ} \\ Capc \\ \hline Gate-Drain Charge^{\circ} \\ \hline Q_{gd} \\ \hline Cate-Source Charge^{\circ} \\ \hline Q_{gd} \\ \hline Turn-On Delay Time^{\circ} \\ \hline Turn-On Delay Time^{\circ} \\ \hline T_{d}(on) \\ \hline Rise Time^{\circ} \\ \hline T_{d}(onf) \\ \hline Fall Time^{\circ} \\ \hline t_{f} \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1    |       | 3                                     | v    |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |       | ± 100                                 | nA   |  |
| $ \begin{array}{ c c c c c } \hline V_{DS} = 60 \ V, \ V_{GS} = 0 \ V, \ T_J = 175 \ ^{\circ}C & \\ \hline V_{DS} = 60 \ V, \ V_{GS} = 0 \ V, \ T_J = 175 \ ^{\circ}C & \\ \hline V_{DS} = 5 \ V, \ V_{GS} = 10 \ V & \\ \hline V_{GS} = 10 \ V, \ I_D = 20 \ A & \\ \hline V_{GS} = 10 \ V, \ I_D = 20 \ A & \\ \hline V_{GS} = 10 \ V, \ I_D = 20 \ A, \ T_J = 125 \ ^{\circ}C & \\ \hline V_{GS} = 10 \ V, \ I_D = 20 \ A, \ T_J = 175 \ ^{\circ}C & \\ \hline V_{GS} = 10 \ V, \ I_D = 20 \ A, \ T_J = 175 \ ^{\circ}C & \\ \hline V_{GS} = 10 \ V, \ I_D = 20 \ A, \ T_J = 175 \ ^{\circ}C & \\ \hline V_{GS} = 4.5 \ V, \ I_D = 15 \ A & \\ \hline \hline Dramic & \\ \hline Dramic & \\ \hline Dynamic & \\ \hline Dynamic & \\ \hline Dutput \ Capacitance & C_{iss} & \\ \hline Output \ Capacitance & C_{iss} & \\ \hline Output \ Capacitance & C_{rss} & \\ \hline Output \ Capacitance & C_{rss} & \\ \hline Total \ Gate \ Charge^{\circ} & Q_g & \\ \hline Gate \ Drain \ Charge^{\circ} & Q_{gs} & \\ \hline Gate \ Drain \ Charge^{\circ} & Q_{gs} & \\ \hline Cater \ Drain \ Charge^{\circ} & Q_{gs} & \\ \hline Turn \ On \ Delay \ Time^{\circ} & t_d(on) & \\ \hline Rise \ Time^{\circ} & t_d(on) & \\ \hline Rise \ Time^{\circ} & t_f & \\ \hline Turn \ Off \ Delay \ Time^{\circ} & t_f & \\ \hline Fall \ Time^{\circ} & t_f & \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |       | 1                                     |      |  |
| $ \begin{array}{c c c c c c } On-State Drain Current^b & I_{D(on)} & V_{DS} = 5 \ V, \ V_{GS} = 10 \ V & V_{GS} = 10 \ V, \ I_D = 20 \ A & V_{GS} = 10 \ V, \ I_D = 20 \ A, \ T_J = 125 \ ^{\circ}C & V_{GS} = 10 \ V, \ I_D = 20 \ A, \ T_J = 125 \ ^{\circ}C & V_{GS} = 10 \ V, \ I_D = 20 \ A, \ T_J = 175 \ ^{\circ}C & V_{GS} = 10 \ V, \ I_D = 20 \ A, \ T_J = 175 \ ^{\circ}C & V_{GS} = 4.5 \ V, \ I_D = 15 \ A & V_{GS} = 4.5 \ V, \ I_D = 15 \ A & V_{DS} = 15 \ V, \ I_D = 20 \ A & V_{DS} = 15 \ V, \ I_D = 20 \ A & V_{DS} = 15 \ V, \ I_D = 20 \ A & V_{DS} = 10 \ V, \ I_D = 20 \ A & V_{DS} = 10 \ V, \ I_D = 20 \ A & V_{DS} = 10 \ V, \ I_D = 20 \ A & V_{DS} = 10 \ V, \ I_D = 20 \ A & V_{DS} = 10 \ V, \ I_D = 20 \ A & V_{DS} = 10 \ V, \ I_D = 50 \ A & V_{DS} = 10 \ V, \ I_D = 50 \ A & V_{DS} = 10 \ V, \ I_D = 50 \ A & V_{DS} = 10 \ V, \ I_D = 50 \ A & V_{DS} = 10 \ V, \ I_D = 50 \ A & V_{DS} = 10 \ V, \ I_D = 50 \ A & V_{DS} = 10 \ V, \ I_D = 50 \ A & V_{DS} = 10 \ V, \ I_D = 50 \ A & V_{DS} = 10 \ V, \ I_D = 50 \ A & V_{DS} = 10 \ V, \ I_D = 50 \ A & V_{DS} = 10 \ V, \ I_D = 50 \ A & V_{DS} = 10 \ V, \ I_D = 50 \ A & V_{DS} = 10 \ V, \ I_D = 50 \ A & V_{DS} = 10 \ V, \ I_D = 50 \ A & V_{DS} = 10 \ V, \ I_D = 50 \ A & V_{DS} = 10 \ V, \ I_D = 50 \ A & V_{DS} = 10 \ V, \ I_D = 50 \ A & V_{DS} = 10 \ V, \ I_D = 50 \ A & V_{DS} = 10 \ V, \ I_D = 50 \ A & V_{DS} = 10 \ V, \ I_D = 2.5 \ \Omega & V_{DS} = 10 \ V, \ I_D = 2.5 \ \Omega & V_{DS} = 10 \ V, \ I_D = 2.5 \ \Omega & V_{DS} = 10 \ V, \ I_D = 2.5 \ \Omega & V_{DS} = 10 \ V, \ I_D = 2.5 \ \Omega & V_{DS} = 10 \ V, \ I_D $                                                                                                                                                                                                                                                                                                                     |      |       | 50                                    | μA   |  |
| $\begin{array}{c} \label{eq:constraint} \begin{array}{ c c c } & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |       | 250                                   |      |  |
| $\begin{array}{c} \label{eq:result} \mbox{Prain-Source On-State Resistance}^b & R_{DS(on)} & \frac{V_{GS} = 10 \ V, \ I_D = 20 \ A, \ T_J = 125 \ ^{\circ}C}{V_{GS} = 10 \ V, \ I_D = 20 \ A, \ T_J = 175 \ ^{\circ}C} & V_{GS} = 10 \ V, \ I_D = 20 \ A, \ T_J = 175 \ ^{\circ}C} & V_{GS} = 4.5 \ V, \ I_D = 15 \ A & V_{GS} = 4.5 \ V, \ I_D = 15 \ A & V_{DS} = 15 \ V, \ I_D = 20 \ A & V_{DS} = 15 \ V, \ I_D = 20 \ A & V_{DS} = 15 \ V, \ I_D = 20 \ A & V_{DS} = 15 \ V, \ I_D = 20 \ A & V_{DS} = 15 \ V, \ I_D = 20 \ A & V_{DS} = 10 \ V, \ I_D = 20 \ A & V_{DS} = 10 \ V, \ I_D = 20 \ A & V_{DS} = 10 \ V, \ I_D = 20 \ A & V_{DS} = 10 \ V, \ I_D = 20 \ A & V_{DS} = 10 \ V, \ I_D = 20 \ A & V_{DS} = 10 \ V, \ I_D = 20 \ A & V_{DS} = 10 \ V, \ I_D = 20 \ A & V_{DS} = 10 \ V, \ I_D = 50 \ A & V_{DS} = 10 \ V, \ I_D = 50 \ A & V_{DS} = 10 \ V, \ I_D = 50 \ A & V_{DS} = 10 \ V, \ I_D = 50 \ A & V_{DS} = 10 \ V, \ I_D = 50 \ A & V_{DS} = 10 \ V, \ I_D = 50 \ A & V_{DS} = 10 \ V, \ I_D = 50 \ A & V_{DS} = 10 \ V, \ I_D = 50 \ A & V_{DS} = 10 \ V, \ I_D = 20 \ A & V_{DS} = 10 \ V, \ I_D = 50 \ A & V_{DS} = 10 \ V, \ I_D = 50 \ A & V_{DS} = 10 \ V, \ I_D = 20 \ A & V_{DS} = 2.5 \ \Omega & V_{DS} = 10 \ V, \ I_D = 2.5 \ \Omega & V_{DS} = 10 \ V, \ I_D = 2.5 \ \Omega & V_{DS} = 10 \ V, \ I_D = 2.5 \ \Omega & V_{DS} = 10 \ V, \ I_D = 2.5 \ \Omega & V_{DS} = 10 \ V, \ I_D = 2.5 \ \Omega & V_{DS} = 10 \ V, \ I_D = 2.5 \ \Omega & V_{DS} = 10 \ V, \ I_D = 2.5 \ \Omega & V_{DS} = 10 \ V, \ I_D = 2.5 \ \Omega & V_{DS} = 10 \ V, \ I_D = 2.5 \ \Omega & V_{DS} = 10 \ V, \ I_D = 2.5 \ \Omega & V_{DS} = 10 \ V, \ I_D = 2.5 \ \Omega & V_{DS} = 10 \ V, \ I_D = 2.5 \ \Omega & V_{DS} = 10 \ V, \ I_D = 2.5 \ \Omega & V_{DS} = 10 \ V, \ I_D = 2.5 \ \Omega & V_{DS} = 10 \ V, \ I_D = 2.5 \ \Omega & V_{DS} = 10 \ V, \ I_D = 2.5 \ \Omega & V_{DS} = 10 \ V, \ I_D = 2.5 \ \Omega & V_{DS} = 10 \ V, \ I_D = 2.5 \ \Omega & V_{DS} = 10 \ V, \ I_D = 2.5 \ \Omega & V_{DS} = 10 \ V, \ I_D = 2.5 \ \Omega & V_{DS} = 10 \ V, \ I_D = 2.5 \ \Omega & V_{DS} = 10 \ V, \ I_D = 2.5 \ \Omega & V_{DS} = 10 \ V, \ I_D = $                                                                                                                                                                                                                           | 60   |       |                                       | А    |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | 0.011 |                                       | Ω    |  |
| $ \begin{array}{ c c c c c } \hline V_{GS} = 10 \text{ V}, \text{ I}_{D} = 20 \text{ A}, \text{ I}_{J} = 173 \text{ C} \\ \hline V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 15 \text{ A} \\ \hline V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 15 \text{ A} \\ \hline V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 20 \text{ A} \\ \hline \end{array} \\ \hline \hline \end{array} \\ \hline \hline$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | 0.014 |                                       |      |  |
| Forward Transconductanceb $g_{fs}$ $V_{DS} = 15 \text{ V}, I_D = 20 \text{ A}$ DynamicInput Capacitance $C_{iss}$ Output Capacitance $C_{oss}$ VGS = 0 V, VDS = 25 V, f = 1 MHzReverse Transfer Capacitance $C_{rss}$ Total Gate Chargec $Q_g$ Gate-Source Chargec $Q_{gs}$ Gate-Drain Chargec $Q_{gd}$ Turn-On Delay Timec $t_{d(on)}$ Rise Timec $t_r$ Turn-Off Delay Timec $t_{d(off)}$ Fall Timec $t_f$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | 0.018 |                                       |      |  |
| Dynamic $C_{iss}$ $V_{GS} = 0 \ V, \ V_{DS} = 25 \ V, \ f = 1 \ MHz$ Input Capacitance $C_{iss}$ Output Capacitance $C_{oss}$ Reverse Transfer Capacitance $C_{rss}$ Total Gate Charge <sup>c</sup> $Q_g$ Gate-Source Charge <sup>c</sup> $Q_{gs}$ Gate-Drain Charge <sup>c</sup> $Q_{gd}$ Turn-On Delay Time <sup>c</sup> $t_{d(on)}$ Rise Time <sup>c</sup> $t_r$ Turn-Off Delay Time <sup>c</sup> $t_{d(off)}$ Fall Time <sup>c</sup> $t_f$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | 0.013 |                                       |      |  |
| $\begin{array}{c c c c c c c c } \hline Input Capacitance & C_{iss} & & & & & & & & & & & & & & & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      | 60    |                                       | S    |  |
| $\begin{array}{ c c c c } \hline Output Capacitance & C_{oss} & V_{GS} = 0 \ V, \ V_{DS} = 25 \ V, \ f = 1 \ MHz & \hline \\ \hline \\ \hline Reverse Transfer Capacitance & C_{rss} & \hline \\ \hline \\ \hline Total Gate Charge^c & Q_g & \\ \hline \\ Gate-Source Charge^c & Q_{gs} & \hline \\ \hline \\ Gate-Drain Charge^c & Q_{gd} & \hline \\ \hline \\ \hline \\ \hline \\ Turn-On Delay Time^c & t_{d(on)} & \\ \hline \\ \hline \\ \hline \\ Rise Time^c & t_r & \\ \hline \\ \hline \\ \hline \\ Turn-Off Delay Time^c & t_{d(off)} & \\ \hline \\ \hline \\ Fall Time^c & t_f & \hline \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |       | · · · · · · · · · · · · · · · · · · · |      |  |
| $\begin{tabular}{ c c c c } \hline Reverse Transfer Capacitance & $C_{rss}$ & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | 4200  |                                       | pF   |  |
| $ \begin{array}{c c} \hline Total \ Gate \ Charge^c & Q_g \\ \hline Gate-Source \ Charge^c & Q_{gs} \\ \hline Gate-Drain \ Charge^c & Q_{gd} \\ \hline Turn-On \ Delay \ Time^c & t_{d(on)} \\ \hline Rise \ Time^c & t_r \\ \hline Turn-Off \ Delay \ Time^c & t_{d(off)} \\ \hline Fall \ Time^c & t_f \\ \end{array} \\ \begin{array}{c} V_{DS} = 30 \ V, \ V_{GS} = 10 \ V, \ I_D = 50 \ A \\ \hline \\ V_{DD} = 30 \ V, \ R_L = 0.6 \ \Omega \\ I_D \cong 50 \ A, \ V_{GEN} = 10 \ V, \ R_g = 2.5 \ \Omega \\ \hline \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | 570   |                                       |      |  |
| $ \begin{array}{c c} Gate-Source Charge^{\circ} & Q_{gs} \\ \hline Gate-Drain Charge^{\circ} & Q_{gd} \\ \hline Turn-On Delay Time^{\circ} & t_{d(on)} \\ \hline Rise Time^{\circ} & t_{r} \\ \hline Turn-Off Delay Time^{\circ} & t_{d(off)} \\ \hline Fall Time^{\circ} & t_{f} \end{array} \begin{array}{c} V_{DS} = 30 \text{ V},        $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | 325   |                                       |      |  |
| $\begin{array}{c c} \hline Gate Gate Gate Gate Gate Gate Gate Gate$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | 47    |                                       |      |  |
| $\begin{tabular}{ c c c c c c } \hline Turn-On \ Delay \ Time^c & t_{d(on)} \\ \hline Rise \ Time^c & t_r & \\ \hline Turn-Off \ Delay \ Time^c & t_{d(off)} & \\ \hline Fall \ Time^c & t_f & \\ \hline \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | 10    |                                       | nC   |  |
| $\begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | 12    |                                       |      |  |
| $\begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | 10    | 20                                    |      |  |
| Fall Time <sup>c</sup> t <sub>f</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | 15    | 25                                    | ns   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | 35    | 50                                    |      |  |
| Source-Drain Diode Ratings and Characteristics ( $T_C = 25 \ ^\circ C$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 20    | 30                                    |      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |       |                                       |      |  |
| Pulsed Current I <sub>SM</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |       | 60                                    | А    |  |
| Diode Forward Voltage $V_{SD}$ $I_F = 20 \text{ A}, V_{GS} = 0 \text{ V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      | 1     | 1.5                                   | V    |  |
| Reverse Recovery Time $t_{rr}$ $I_F = 20 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | 45    | 100                                   | ns   |  |

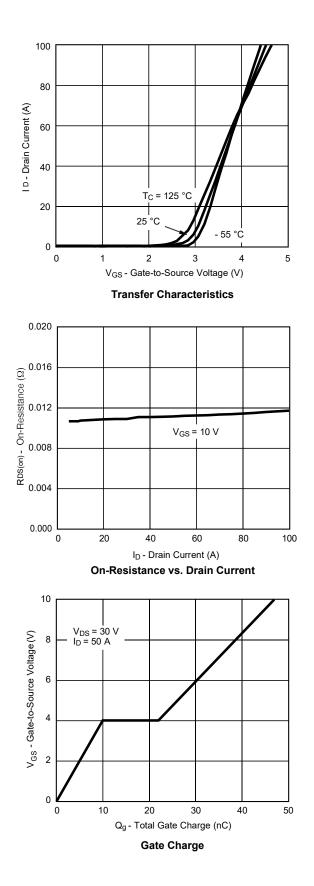
Notes:

a. For design aid only; not subject to production testing.

b. Pulse test; pulse width  $\leq$  300 µs, duty cycle  $\leq$  2 %.

c. Independent of operating temperature.

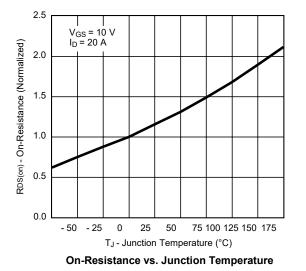

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


.com

'Bsemi



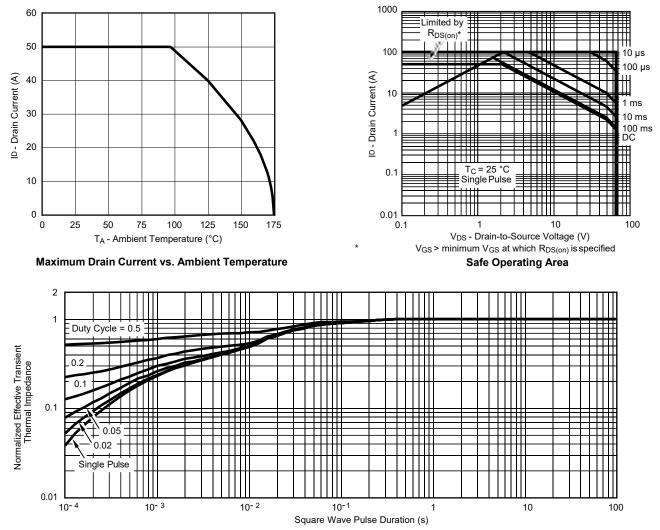
#### TYPICAL CHARACTERISTICS (25 °C unless noted)






服务热线:400-655-8788

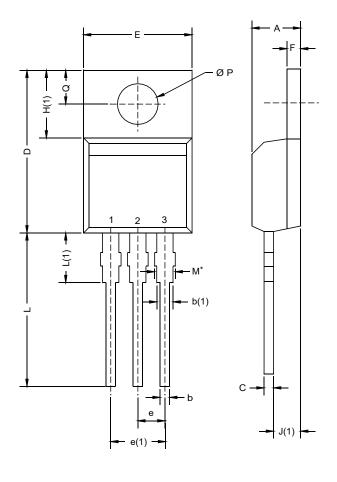



### TYPICAL CHARACTERISTICS (25 °C unless noted)



(Y) Hund of the second second

B<sup>®</sup>VBsemi www.VBsemi.com


#### THERMAL RATINGS



Normalized Thermal Transient Impedance, Junction-to-Case



## **TO-220AB**



| 514                   | MILLIM            | ETERS     | INC   | INCHES |  |  |
|-----------------------|-------------------|-----------|-------|--------|--|--|
| DIM.                  | MIN.              | MAX.      | MIN.  | MAX.   |  |  |
| А                     | 4.24              | 4.65      | 0.167 | 0.183  |  |  |
| b                     | 0.69              | 1.02      | 0.027 | 0.040  |  |  |
| b(1)                  | 1.14              | 1.78      | 0.045 | 0.070  |  |  |
| С                     | 0.36              | 0.61      | 0.014 | 0.024  |  |  |
| D                     | 14.33             | 15.85     | 0.564 | 0.624  |  |  |
| Е                     | 9.96              | 10.52     | 0.392 | 0.414  |  |  |
| е                     | 2.41              | 2.67      | 0.095 | 0.105  |  |  |
| e(1)                  | 4.88              | 5.28      | 0.192 | 0.208  |  |  |
| F                     | 1.14              | 1.40      | 0.045 | 0.055  |  |  |
| H(1)                  | 6.10              | 6.71      | 0.240 | 0.264  |  |  |
| J(1)                  | 2.41              | 2.92      | 0.095 | 0.115  |  |  |
| L                     | 13.36             | 14.40     | 0.526 | 0.567  |  |  |
| L(1)                  | 3.33              | 4.04      | 0.131 | 0.159  |  |  |
| ØР                    | 3.53              | 3.94      | 0.139 | 0.155  |  |  |
| Q                     | 2.54              | 3.00      | 0.100 | 0.118  |  |  |
| ECN: X15-<br>DWG: 603 | 0364-Rev. C,<br>1 | 14-Dec-15 |       |        |  |  |

#### Note

• M\* = 0.052 inches to 0.064 inches (dimension including protrusion), heatsink hole for HVM



# Disclaimer

All products due to improve reliability, function or design or for other reasons, product specifications and data are subject to change without notice.

Taiwan VBsemi Electronics Co., Ltd., branches, agents, employees, and all persons acting on its or their representatives (collectively, the "Taiwan VBsemi"), assumes no responsibility for any errors, inaccuracies or incomplete data contained in the table or any other any disclosure of any information related to the product.(www.VBsemi.com)

Taiwan VBsemi makes no guarantee, representation or warranty on the product for any particular purpose of any goods or continuous production. To the maximum extent permitted by applicable law on Taiwan VBsemi relinquished: (1) any application and all liability arising out of or use of any products; (2) any and all liability, including but not limited to special, consequential damages or incidental; (3) any and all implied warranties, including a particular purpose, non-infringement and merchantability guarantee.

Statement on certain types of applications are based on knowledge of the product is often used in a typical application of the general product VBsemi Taiwan demand that the Taiwan VBsemi of. Statement on whether the product is suitable for a particular application is non-binding. It is the customer's responsibility to verify specific product features in the products described in the specification is appropriate for use in a particular application. Parameter data sheets and technical specifications can be provided may vary depending on the application and performance over time. All operating parameters, including typical parameters must be made by customer's technical experts validated for each customer application. Product specifications do not expand or modify Taiwan VBsemi purchasing terms and conditions, including but not limited to warranty herein.

Unless expressly stated in writing, Taiwan VBsemi products are not intended for use in medical, life saving, or life sustaining applications or any other application. Wherein VBsemi product failure could lead to personal injury or death, use or sale of products used in Taiwan VBsemi such applications using client did not express their own risk. Contact your authorized Taiwan VBsemi people who are related to product design applications and other terms and conditions in writing.

The information provided in this document and the company's products without a license, express or implied, by estoppel or otherwise, to any intellectual property rights granted to the VBsemi act or document. Product names and trademarks referred to herein are trademarks of their respective representatives will be all.

## **Material Category Policy**

Taiwan VBsemi Electronics Co., Ltd., hereby certify that all of the products are determined to be RoHS compliant and meets the definition of restrictions under Directive of the European Parliament 2011/65 / EU, 2011 Nian. 6. 8 Ri Yue restrict the use of certain hazardous substances in electrical and electronic equipment (EEE) - modification, unless otherwise specified as inconsistent.(www.VBsemi.com)

Please note that some documents may still refer to Taiwan VBsemi RoHS Directive 2002/95 / EC. We confirm that all products identified as consistent with the Directive 2002/95 / EC European Directive 2011/65 /.

Taiwan VBsemi Electronics Co., Ltd. hereby certify that all of its products comply identified as halogen-free halogen-free standards required by the JEDEC JS709A. Please note that some Taiwanese VBsemi documents still refer to the definition of IEC 61249-2-21, and we are sure that all products conform to confirm compliance with IEC 61249-2-21 standard level JS709A.