

RoHS

COMPLIANT HALOGEN

FREE

HM2300B-VB Datasheet

N-Channel 20 V (D-S) MOSFET

PRODUCT SUMMARY						
V _{DS} (V)	R _{DS(on)} (Ω)	I _D (A) ^e	Q _g (Typ.)			
	0.028 at V _{GS} = 4.5 V	6 ^a				
20	0.042 at V _{GS} = 2.5 V	6 ^a	8.8 nC			
	0.050 at V _{GS} = 1.8 V	5.6				

FEATURES

- Halogen-free According to IEC 61249-2-21
 Definition
- TrenchFET[®] Power MOSFET
- 100 % $\rm R_g$ Tested
- Compliant to RoHS Directive 2002/95/EC

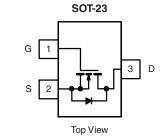
APPLICATIONS

- DC/DC Converters
- Load Switch for Portable Applications

Parameter	Symbol	Limit	Unit		
Drain-Source Voltage		V _{DS}	20	V	
Gate-Source Voltage		V _{GS}	± 12	V	
	T _C = 25 °C		6 ^a		
Continuous Drain Consent (T. 150 °C)	T _C = 70 °C		5.1		
Continuous Drain Current ($T_J = 150 \ ^{\circ}C$)	T _A = 25 °C		5 ^{b, c}		
	T _A = 70 °C		4 ^{b, c}	A	
Pulsed Drain Current		I _{DM}	20		
Continuous Source Droin Diado Current	T _C = 25 °C		1.75		
Continuous Source-Drain Diode Current	T _A = 25 °C	I _S	1.04 ^{b, c}		
	T _C = 25 °C		2.1		
Movimum Dower Dissinction	T _C = 70 °C		1.3	w	
Maximum Power Dissipation	T _A = 25 °C	P _D	1.25 ^{b, c}	vv	
	T _A = 70 °C		0.8 ^{b, c}		
Operating Junction and Storage Temperature Range		T _J , T _{stg}	- 55 to 150	°C	
Soldering Recommendations (Peak Tempera		260			

THERMAL RESISTANCE RATINGS						
Parameter		Symbol	Typical	Maximum	Unit	
Maximum Junction-to-Ambient ^{b, d}	t ≤ 5 s	R _{thJA}	80	100	°C/W	
Maximum Junction-to-Foot (Drain)	Steady State	R _{thJF}	40	60	0/11	

Notes:


a. Package limited

b. Surface Mounted on 1" x 1" FR4 board.

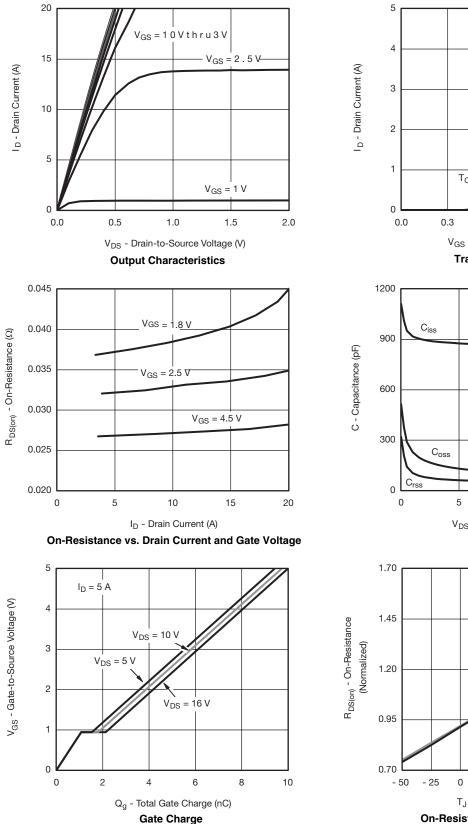
c. t = 5 s.

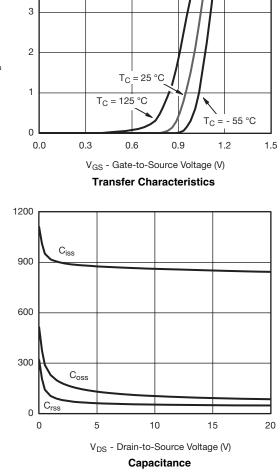
d. Maximum under steady state conditions is 125 °C/W.

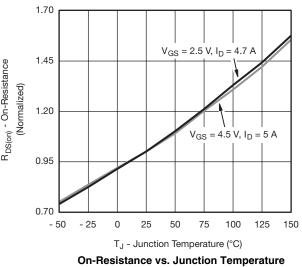
e. Based on T_C = 25 °C.

$\begin{array}{ c c c c } \hline Parameter & Symbol & Test Conditions & Min. & Typ. & Max. & Unit \\ \hline Static & & & & & & & & & & \\ \hline Static & & & & & & & & & & & & & \\ \hline Static & & & & & & & & & & & & & & & & & & &$	SPECIFICATIONS $T_J = 25 \ ^{\circ}C$, u	unless othe	rwise noted					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Static							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Drain-Source Breakdown Voltage	V _{DS}	V_{GS} = 0 V, I_D = 250 μ A	20			V	
$\begin{split} & \begin{array}{c c c c c c c c c c c c c c c c c c c $	V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	I 250 uA		25		m\//ºC	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V _{GS(th)} Temperature Coefficient	$\Delta V_{GS(th)}/T_J$	1 <u>0</u> - 200 μΛ		- 2.6			
$ \begin{array}{ c c c c c c } \hline V_{DS} = 20 \ V, \ V_{GS} = 0 \ V, \ V_{GS} = 4.5 \ V \ 20 \ A \ A \ V_{GS} = 0 \ V, \ V_{GS} = 4.5 \ V \ U_{SS} = 0 \ V, \ V_{GS} = 4.5 \ V \ U_{SS} = 0 \ V, \ V_{GS} = 4.5 \ V \ U_{SS} = 0 \ V, \ V_{GS} = 4.5 \ V \ U_{SS} = 0 \ V, \ V_{GS} = 4.5 \ V \ U_{SS} = 0 \ V, \ V_{GS} = 4.5 \ V \ U_{SS} = 0 \ V, \ V_{GS} = 4.5 \ V \ U_{SS} = 0 \ V, \ V_{GS} = 4.5 \ V, \ U_{SS} = 0 \ V, \ V_{GS} = 4.5 \ V, \ U_{SS} = 0 \ V, \ V_{GS} = 1.8 \ V, \ U_{SS} = 0 \ V, \ V_{SS} = 0 \ V, $	Gate-Source Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	0.45		1.0	V	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Source Leakage	I _{GSS}	$V_{DS} = 0 V, V_{GS} = \pm 8 V$			± 100	nA	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1	$V_{DS} = 20 V, V_{GS} = 0 V$			1		
$ \begin{array}{ c c c c c } & V_{GS} = 4.5 \ V, \ I_D = 5.0 \ A & 0.028 & 0.042 $	Zero Gate Voltage Drain Current	'DSS	V_{DS} = 20 V, V_{GS} = 0 V, T_{J} = 70 °C			10	μΑ	
$ \begin{array}{ c c c c c } \hline \mbox{Drain-Source On-State Resistance}^a & \mbox{P}_{DS(on)} & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	On-State Drain Current ^a	I _{D(on)}	$V_{DS}{\leq}5$ V, $V_{GS}{=}4.5$ V	20			Α	
$ \begin{array}{ c c c c c } \hline V_{GS} = 1.8 \ V, \ I_{D} = 4.3 \ A & 0.050 & \\ \hline V_{GS} = 10 \ V, \ I_{D} = 5.0 \ A & 24 & S \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$			$V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 5.0 \text{ A}$		0.028			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Drain-Source On-State Resistance ^a	R _{DS(on)}	$V_{GS} = 2.5 \text{ V}, I_D = 4.7 \text{ A}$		0.042		Ω	
$ \begin{array}{ c c c c c } \hline \textbf{Dynamic}^{\textbf{b}} \\ \hline lnput Capacitance & C_{iss} \\ \hline Output Capacitance & C_{rss} \\ \hline W_{DS} = 10 \ V, \ V_{GS} = 0 \ V, \ f = 1 \ MHz \\ \hline MDS = 10 \ V, \ V_{GS} = 5 \ V, \ I_D = 5.0 \ A \\ \hline MDS = 10 \ V, \ V_{GS} = 5 \ V, \ I_D = 5.0 \ A \\ \hline MDS = 10 \ V, \ V_{GS} = 5 \ V, \ I_D = 5.0 \ A \\ \hline MDS = 10 \ V, \ V_{GS} = 5 \ V, \ I_D = 5.0 \ A \\ \hline MDS = 10 \ V, \ V_{GS} = 5 \ V, \ I_D = 5.0 \ A \\ \hline MDS = 10 \ V, \ V_{GS} = 5 \ V, \ I_D = 5.0 \ A \\ \hline MDS = 10 \ V, \ V_{GS} = 5 \ V, \ I_D = 5.0 \ A \\ \hline MDS = 10 \ V, \ V_{GS} = 5 \ V, \ I_D = 5.0 \ A \\ \hline MDS = 10 \ V, \ V_{GS} = 4.5 \ V, \ I_D = 5.0 \ A \\ \hline MDS = 10 \ V, \ V_{GS} = 4.5 \ V, \ I_D = 5.0 \ A \\ \hline MDS = 10 \ V, \ V_{GS} = 4.5 \ V, \ I_D = 5.0 \ A \\ \hline MDS = 10 \ V, \ V_{GS} = 4.5 \ V, \ I_D = 5.0 \ A \\ \hline MDS = 10 \ V, \ MDS = $		-	$V_{GS} = 1.8 \text{ V}, I_D = 4.3 \text{ A}$		0.050			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Forward Transconductance ^a	9 _{fs}	$V_{DS} = 10 \text{ V}, \text{ I}_{D} = 5.0 \text{ A}$		24		S	
$ \begin{array}{ c c c c c } \hline \mbox{Output Capacitance} & C_{oss} \\ \hline \mbox{Peverse Transfer Capacitance} & C_{rss} \\ \hline \mbox{Peverse Transfer Capacitance} & C_{rss} \\ \hline \mbox{Total Gate Charge} & O_{g} \\ \hline \mbox{Output Capacitance} & O_{g} \\ \hline \mbox{Cate Charge} & O_{g} \\ \hline \mbox{Gate-Drain Charge} & O_{g} \\ \hline \mbox{Gate Besistance} & P_{g} \\ \hline \mbox{Output Time} & 0.0.7 \\ \hline \mbox{Cate Charge} & O_{g} \\ \hline$	Dynamic ^b							
$ \begin{array}{ c c c c c } \hline \mbox{Reverse Transter Capacitance} & C_{rss} & & & & & & & & & & & & & & & & & & $	Input Capacitance	C _{iss}			865		pF	
$ \begin{array}{c c c c c c c c } \hline Total Gate Charge & Q_g & $V_{DS} = 10 \ V, \ V_{GS} = 5 \ V, \ I_D = 5.0 \ A & 12 & 18 & 14 \\ \hline \ Gate-Source Charge & Q_{gd} & $V_{DS} = 10 \ V, \ V_{GS} = 4.5 \ V, \ I_D = 5.0 \ A & 1.1 & 0.5 & 2.4 & 4.8 & 0 & 1.1 & 0.7	Output Capacitance	C _{oss}	V_{DS} = 10 V, V_{GS} = 0 V, f = 1 MHz		105			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Reverse Transfer Capacitance	C _{rss}			55			
$ \begin{array}{ c c c c c } \hline C & C & C & C & C & C & C & C & C & C$		Qg	$V_{DS} = 10 \text{ V}, V_{GS} = 5 \text{ V}, I_{D} = 5.0 \text{ A}$		12	18		
$ \begin{array}{ c c c c c c } \hline Gate-Source Charge & Q_{gs} & V_{DS} = 10 \ V, \ V_{GS} = 4.5 \ V, \ I_D = 5.0 \ A & 1.1 & 0.7 & 0$	Total Gate Charge				8.8	14	nC	
$ \begin{array}{c c c c c c c c c c } \hline Gate Resistance & R_g & f = 1 \ MHz & 0.5 & 2.4 & 4.8 & \Omega \\ \hline Turn-On Delay Time & t_d(on) & & & & & & & & & & & & & & & & & & &$	Gate-Source Charge	Q _{gs}	V_{DS} = 10 V, V_{GS} = 4.5 V, I_{D} = 5.0 A		1.1			
$ \begin{array}{c c c c c c c c } \hline Turn-On Delay Time & t_{d(on)} & & & & & & & & & & & & & & & & & & &$	Gate-Drain Charge	Q _{gd}			0.7			
$ \begin{array}{c c c c c c c c c } \hline Rise Time & t_r & t_r & t_r & t_d(off) \\ \hline Turn-Off Delay Time & t_d(off) & t_r & t_d(off) & t$	Gate Resistance	Rg	f = 1 MHz	0.5	2.4	4.8	Ω	
$\begin{array}{ c c c c } \hline \mbox{Hubber line} & \mbox{Iq} & \mbo$	Turn-On Delay Time	t _{d(on)}			8	16		
$\begin{array}{c c c c c c c } \hline \mbox{time} & ti$	Rise Time	t _r	BB E		17	26	1	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Turn-Off Delay Time	t _{d(off)}	$I_D \cong 4 \text{ A}, V_{GEN} = 4.5 \text{ V}, R_g = 1 \Omega$		31	47		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Fall Time	t _f			8	16	ns	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Turn-On Delay Time	t _{d(on)}			5	10		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Rise Time	t _r	DD E		13	20	-	
$\begin{tabular}{ c c c c c } \hline Drain-Source Body Diode Characteristics & & & & & & & & & & & & & & & & & & &$	Turn-Off Delay Time	t _{d(off)}	$I_D \cong 4 \text{ A}, V_{GEN} = 5 \text{ V}, R_g = 1 \Omega$		21	32		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Fall Time	t _f			6	12		
Pulse Diode Forward CurrentI SMI SM20ABody Diode VoltageV SDI S = 4 A, VGS = 0 V0.751.2VBody Diode Reverse Recovery Time t_{rr} 1220nsBody Diode Reverse Recovery Charge Q_{rr} I F = 4 A, dI/dt = 100 A/µs, TJ = 25 °C510nCReverse Recovery Fall Time t_a rr rr rr rr rr rr	Drain-Source Body Diode Characteristic	s						
Pulse Diode Forward CurrentI SM20Body Diode Voltage V_{SD} $I_S = 4 \text{ A}, V_{GS} = 0 \text{ V}$ 0.751.2VBody Diode Reverse Recovery Time t_{rr} 1220nsBody Diode Reverse Recovery Charge Q_{rr} $I_F = 4 \text{ A}, dI/dt = 100 \text{ A/}\mus, T_J = 25 ^{\circ}\text{C}$ 510nCReverse Recovery Fall Time t_a rr rr rr rr rr	Continuous Source-Drain Diode Current	ا _S	$T_{C} = 25 \ ^{\circ}C$			1.75	^	
Body Diode Reverse Recovery Time t_{rr} 1220nsBody Diode Reverse Recovery Charge Q_{rr} $I_F = 4 \text{ A}, dI/dt = 100 \text{ A/}\mu\text{s}, T_J = 25 \text{ °C}$ 510nCReverse Recovery Fall Time t_a 77ns	Pulse Diode Forward Current	I _{SM}				20	^	
Body Diode Reverse Recovery Charge Q_{rr} $I_F = 4 \text{ A}, dl/dt = 100 \text{ A/}\mu\text{s}, T_J = 25 ^{\circ}\text{C}$ 510nCReverse Recovery Fall Time t_a 77ns	Body Diode Voltage	V _{SD}	$I_{S} = 4 A, V_{GS} = 0 V$		0.75	1.2	V	
Reverse Recovery Fall Time t_a $I_F = 4 \text{ A}, dI/dt = 100 \text{ A}/\mu\text{s}, I_J = 25 \text{ °C}$ 7 ns	Body Diode Reverse Recovery Time	t _{rr}			12	20	ns	
Reverse Recovery Fall Time t _a 7	Body Diode Reverse Recovery Charge	Q _{rr}	L = 4 A dl/dt = 100 A/us T = 25 °C		5	10	nC	
Reverse Recovery Rise Time tb 5	Reverse Recovery Fall Time	t _a	$r_{\rm F} = 4 R_{\rm c}$ and $= 100 R/\mu s$, $r_{\rm J} = 25 C$		7		20	
	Reverse Recovery Rise Time	t _b			5		115	

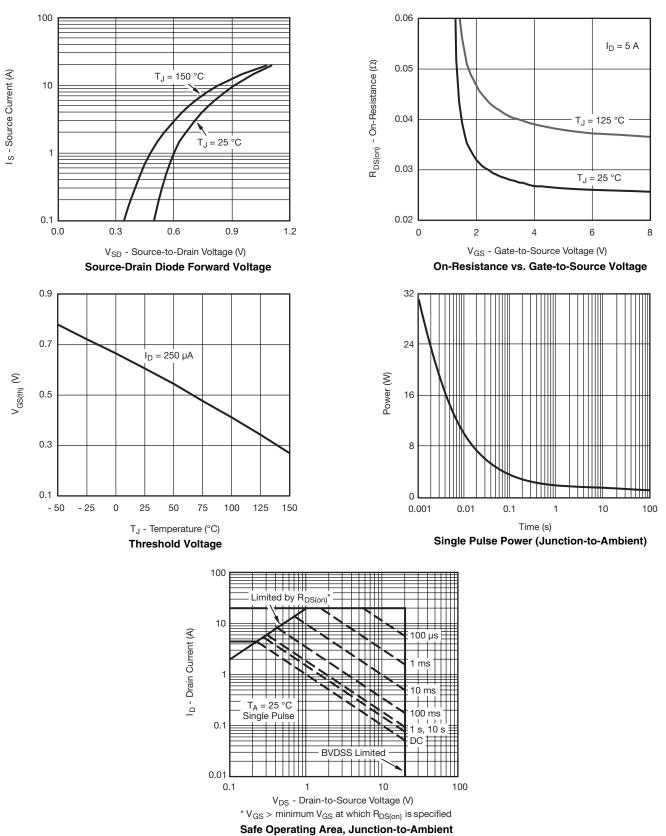
Notes:

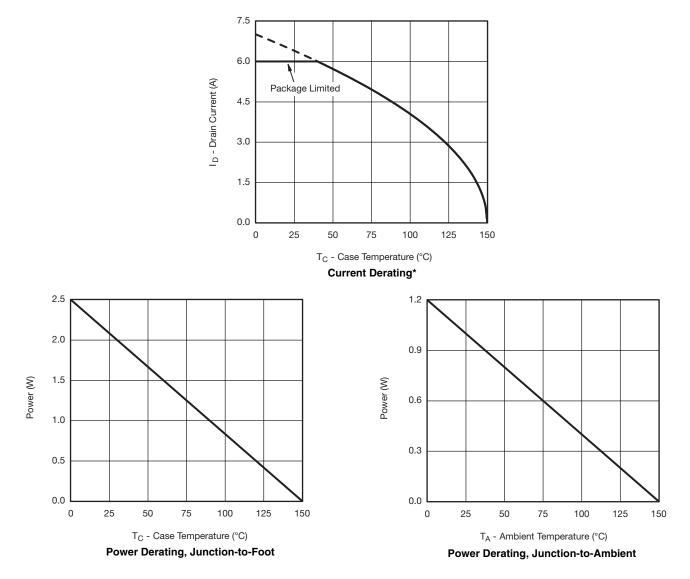

a. Pulse test; pulse width \leq 300 $\mu s,$ duty cycle \leq 2 % b. Guaranteed by design, not subject to production testing.

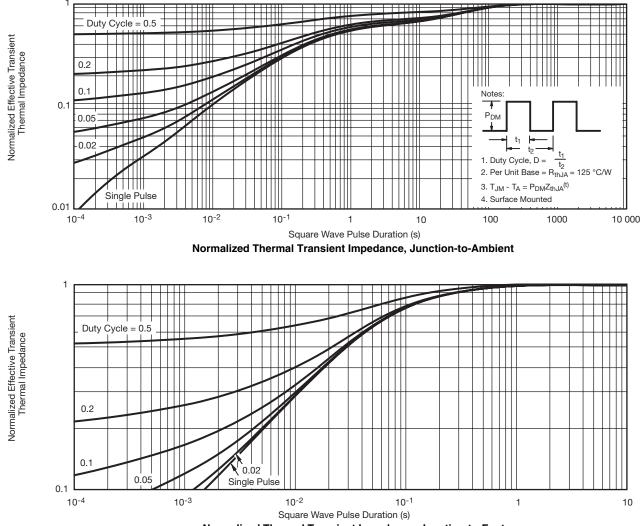

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


Bsemi

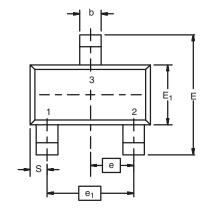
www.VBsemi.com

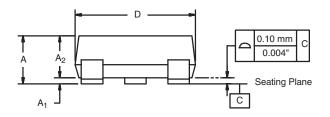


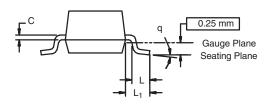




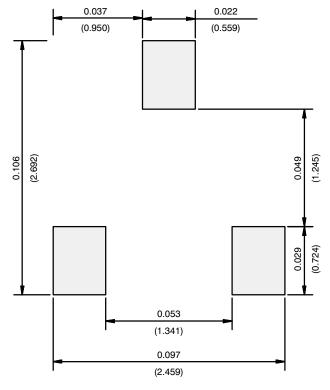
* The power dissipation P_D is based on $T_{J(max.)} = 150$ °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.






Normalized Thermal Transient Impedance, Junction-to-Foot

SOT-23 (TO-236): 3-LEAD



Dim	MILLI	METERS	INCHES		
	Min	Max	Min	Max	
Α	0.89	1.12	0.035	0.044	
A ₁	0.01	0.10	0.0004	0.004	
A ₂	0.88	1.02	0.0346	0.040	
b	0.35	0.50	0.014	0.020	
С	0.085	0.18	0.003	0.007	
D	2.80	3.04	0.110	0.120	
E	2.10	2.64	0.083	0.104	
E ₁	1.20	1.40	0.047	0.055	
е	0.95 BSC		0.0374 Ref		
e ₁	1.90 BSC		0.0748 Ref		
L	0.40	0.60	0.016	0.024	
L ₁	0.64 Ref		0.025	5 Ref	
S	0.50 Ref		0.020 Ref		
q	3°	8°	3°	8°	
ECN: S-03946-Rev. K, 09-J DWG: 5479	ul-01	•	·		

RECOMMENDED MINIMUM PADS FOR SOT-23

Recommended Minimum Pads Dimensions in Inches/(mm)

Disclaimer

All products due to improve reliability, function or design or for other reasons, product specifications and data are subject to change without notice.

Taiwan VBsemi Electronics Co., Ltd., branches, agents, employees, and all persons acting on its or their representatives (collectively, the "Taiwan VBsemi"), assumes no responsibility for any errors, inaccuracies or incomplete data contained in the table or any other any disclosure of any information related to the product.(www.VBsemi.com)

Taiwan VBsemi makes no guarantee, representation or warranty on the product for any particular purpose of any goods or continuous production. To the maximum extent permitted by applicable law on Taiwan VBsemi relinquished: (1) any application and all liability arising out of or use of any products; (2) any and all liability, including but not limited to special, consequential damages or incidental; (3) any and all implied warranties, including a particular purpose, non-infringement and merchantability guarantee.

Statement on certain types of applications are based on knowledge of the product is often used in a typical application of the general product VBsemi Taiwan demand that the Taiwan VBsemi of. Statement on whether the product is suitable for a particular application is non-binding. It is the customer's responsibility to verify specific product features in the products described in the specification is appropriate for use in a particular application. Parameter data sheets and technical specifications can be provided may vary depending on the application and performance over time. All operating parameters, including typical parameters must be made by customer's technical experts validated for each customer application. Product specifications do not expand or modify Taiwan VBsemi purchasing terms and conditions, including but not limited to warranty herein.

Unless expressly stated in writing, Taiwan VBsemi products are not intended for use in medical, life saving, or life sustaining applications or any other application. Wherein VBsemi product failure could lead to personal injury or death, use or sale of products used in Taiwan VBsemi such applications using client did not express their own risk. Contact your authorized Taiwan VBsemi people who are related to product design applications and other terms and conditions in writing.

The information provided in this document and the company's products without a license, express or implied, by estoppel or otherwise, to any intellectual property rights granted to the VBsemi act or document. Product names and trademarks referred to herein are trademarks of their respective representatives will be all.

Material Category Policy

Taiwan VBsemi Electronics Co., Ltd., hereby certify that all of the products are determined to be oHS compliant and meets the definition of restrictions under Directive of the European Parliament 2011/65 / EU, 2011 Nian. 6. 8 Ri Yue restrict the use of certain hazardous substances in electrical and electronic equipment (EEE) - modification, unless otherwise specified as inconsistent.(www.VBsemi.com)

Please note that some documents may still refer to Taiwan VBsemi RoHS Directive 2002/95 / EC. We confirm that all products identified as consistent with the Directive 2002/95 / EC European Directive 2011/65 /.

Taiwan VBsemi Electronics Co., Ltd. hereby certify that all of its products comply identified as halogen-free halogen-free standards required by the JEDEC JS709A. Please note that some Taiwanese VBsemi documents still refer to the definition of IEC 61249-2-21, and we are sure that all products conform to confirm compliance with IEC 61249-2-21 standard level JS709A.