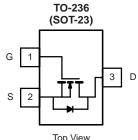
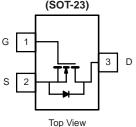


AM2322N-T1-PF-VB Datasheet

N-Channel 30-V (D-S) MOSFET

PRODUCT SUMMARY					
V _{DS} (V)	R _{DS(on)} (Ω)	I _D (A) ^a	Q _g (Typ.)		
30	0.030 at V _{GS} = 10 V	6.5	4.5 nC		
50	0.033 at V _{GS} = 4.5 V	6.0	4.5 110		


FEATURES


- Halogen-free According to IEC 61249-2-21 Definition
- TrenchFET[®] Power MOSFET
- 100 % R_g Tested ٠
- Compliant to RoHS Directive 2002/95/EC ٠

APPLICATIONS

DC/DC Converter

G S N-Channel MOSFET

Parameter		Symbol	Limit	Unit	
Drain-Source Voltage		V _{DS}	30	V	
Gate-Source Voltage		V _{GS}	± 20	V	
	T _C = 25 °C		6.5 ^a		
Continuous Drain Current ($T_1 = 150 \ ^{\circ}C$)	T _C = 70 °C	I _D	6.0		
	T _A = 25 °C	טי	5.3		
	T _A = 70 °C	1	5.0	A	
Pulsed Drain Current		I _{DM}	25		
	T _C = 25 °C		1.4		
Continuous Source-Drain Diode Current	T _A = 25 °C	I _S	0.9 ^{b, c}		
	T _C = 25 °C		1.7		
Maximum Power Dissipation	T _C = 70 °C	P _D	1.1	w	
	T _A = 25 °C		1.1 ^{b, c}	VV	
	T _A = 70 °C	1	0.7 ^{b, c}		
Operating Junction and Storage Temperature Range		T _J , T _{stg}	- 55 to 150	°C	
Soldering Recommendations (Peak Temperature) ^{d, e}			260	-U	

THERMAL RESISTANCE RATINGS						
Parameter		Symbol	Typical	Maximum	Unit	
Maximum Junction-to-Ambient ^{b, d}	t ≤ 5 s	R _{thJA}	90	115	°C/W	
Maximum Junction-to-Foot (Drain) Steady State		R _{thJF}	60	75	0/11	

Notes:

a. Package limited

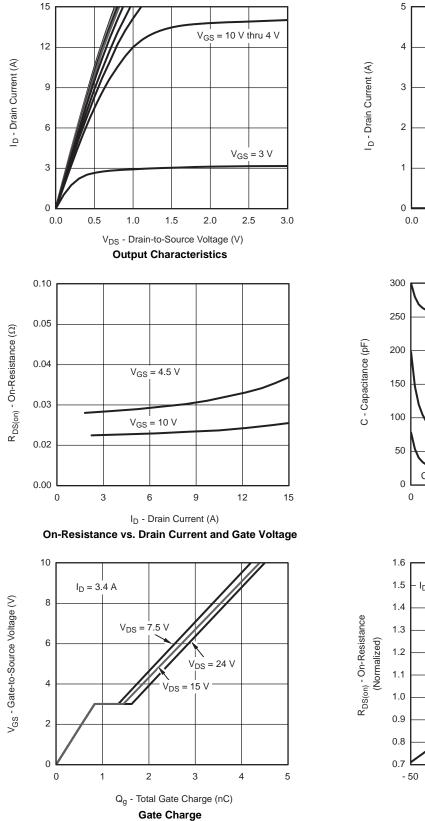
b. Surface Mounted on 1" x 1" FR4 board.

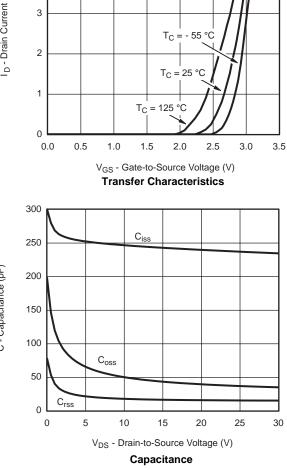
c. t = 5 s.

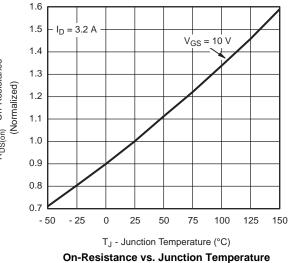
d. Maximum under steady state conditions is 130 °C/W.

$\begin{array}{ c c c c c } \hline Parameter & Symbol & Test Conditions & Min. & Typ. & Max. & Unit \\ \hline Static & & & & & & & & & & & & & & & & & & &$	SPECIFICATIONS $T_J = 25 \ ^{\circ}C$,	unless othe	rwise noted					
$\begin{array}{ c c c c c c c } \hline Drain-Source Breakdown Voltage & V_DS & V_GS = 0 V, I_D = 250 \ \mu A & 30 & & & V \\ V_DS =mperature Coefficient & \Delta V_{OS} T_J & I_D = 250 \ \mu A & .5 & .5 & .5 \\ \hline V_{OS} = Threshold Voltage & V_{OS} (m) & V_{DS} = V_{OS} , I_D = 250 \ \mu A & 0.7 & 1.1 & 2.0 & V \\ \hline Gate-Source Inteshold Voltage & V_{OS} & V_{OS} = 0 V, V_{OS} = 120 \ \mu A & 0.7 & 1.1 & 2.0 & V \\ \hline Gate-Source Leakage & I_{OSS} & V_{DS} = 0 V, V_{OS} = 120 \ \mu A & 0.7 & 1.1 & 2.0 & V \\ \hline Gate-Source Charge & O_{OS} & V_{OS} = 0 V, V_{OS} = 0 V & 10 & & A \\ \hline V_{DS} = 30 V, V_{OS} = 0 V, V_{OS} = 0 V & 10 & & A \\ \hline V_{DS} = 30 V, V_{OS} = 0 V, V_{OS} = 15 V & 10 & & A \\ \hline On-State Drain Current & I_{DSS} & V_{OS} = 10 V, I_D = 3.2 A & 0.030 & & \\ \hline Orain-Source On-State Resistance^a & R_{DS}(m) & V_{DS} = 15 V, V_{OS} = 10 V, I_D = 3.2 A & 0.030 & & \\ \hline Orain-Source On-State Resistance & C_{ms} & & V_{DS} = 15 V, V_{OS} = 0 V, I = 1 \ MHz & 45 & 6.7 \\ \hline Orburu Capacitance & C_{ms} & & V_{DS} = 15 V, V_{OS} = 0 V, I = 1 \ MHz & 45 & 6.7 \\ \hline Total Gate Charge & Q_g & & V_{DS} = 15 V, V_{OS} = 10 V, I_D = 3.4 A & 0.85 & & \\ \hline Gate-Drain Charge & Q_{gs} & & V_{DS} = 15 V, V_{OS} = 4.5 V, I_D = 3.4 A & 0.85 & & \\ \hline Gate-Drain Charge & Q_g & & & & & & & & & & & & & & & & & & &$	Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Static							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Drain-Source Breakdown Voltage	V _{DS}	$V_{GS} = 0 V, I_{D} = 250 \mu A$	30			V	
	V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	J		31		m\//°C	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V _{GS(th)} Temperature Coefficient	$\Delta V_{GS(th)}/T_J$	ΙΔ = 200 μΛ		- 5			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Source Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	0.7	1.1	2.0	V	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Source Leakage	I _{GSS}	$V_{DS} = 0 V, V_{GS} = \pm 20 V$			± 100	nA	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Zara Cata Valtaga Drain Current	1	$V_{DS} = 30 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$			1		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Zero Gate voltage Drain Current	DSS	$V_{DS} = 30 \text{ V}, \text{ V}_{GS} = 0 \text{ V}, \text{ T}_{J} = 55 ^{\circ}\text{C}$			10	μA	
$ \begin{array}{ c c c c c } \hline \mbox{Drain-Source On-State Resistance}^a & \mbox{R} & \m$	On-State Drain Current ^a	I _{D(on)}	$V_{DS} \ge 5 \text{ V}, \text{ V}_{GS} = 10 \text{ V}$	10			А	
$ \begin{array}{ c c c c c } \hline \begin{tabular}{ c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		D	V _{GS} = 10 V, I _D = 3.2 A		0.030		Ω	
$ \begin{array}{c c c c c c } \hline \mbox{transformed} & tra$	Drain-Source On-State Resistance ^a	RDS(on)	V _{GS} = 4.5 V, I _D = 2.8 A		0.033			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Forward Transconductance ^a	9 _{fs}	V _{DS} = 15 V, I _D = 4.8 A		11		S	
$ \begin{array}{ c c c c c } \hline \mbox{Output Capacitance} & C_{\mbox{Oss}} & V_{\mbox{Oss}} = 15 \ V, \ V_{\mbox{Oss}} = 0 \ V, \ f = 1 \ MHz & 45 & 17 & 17 & 17 & 17 & 17 & 17 & 17 & 1$	Dynamic ^b					I		
$ \begin{array}{ c c c c c } \hline \mbox{Output Capacitance} & C_{\mbox{Oss}} & V_{\mbox{Oss}} = 15 \ V, \ V_{\mbox{Oss}} = 0 \ V, \ f = 1 \ MHz & 45 & 17 & 17 & 17 & 17 & 17 & 17 & 17 & 1$		C _{iss}			335			
$ \begin{array}{ c c c c c c c } \hline Reverse Transfer Capacitance & C_{rss} & & & & & & & & & & & & & & & & & & $			V _{DS} = 15 V, V _{GS} = 0 V, f = 1 MHz		45		pF	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Reverse Transfer Capacitance				17			
$ \begin{array}{ c c c c c c } \hline loc l c c c c c c c c c c c c c c c c c$			V _{DS} = 15 V, V _{GS} = 10 V, I _D = 3.4 A		4.5	6.7	2	
$ \begin{array}{ c c c c c c c } \hline Gate-Source Charge & G_{gs} & V_{DS} = 15 \ V, \ V_{GS} = 4.5 \ V, \ I_D = 3.4 \ A & 0.85 $	Total Gate Charge	Q _g			2.1	3.2		
$ \begin{array}{ c c c c c } \hline Gate-Drain Charge & Q_{gd} & & & & & & & & & & & & & & & & & & &$	Gate-Source Charge	Q _{gs}	V_{DS} = 15 V, V_{GS} = 4.5 V, I_{D} = 3.4 A		0.85			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Drain Charge				0.65			
$ \begin{array}{ c c c c c c c } \hline Rise Time & t_r & V_{DD} = 15 \ V, \ R_L = 5.6 \ \Omega \\ l_D \cong 2.7 \ A, \ V_{GEN} = 4.5 \ V, \ R_g = 1 \ \Omega & 12 & 20 \\ \hline l_D \cong 2.7 \ A, \ V_{GEN} = 4.5 \ V, \ R_g = 1 \ \Omega & 12 & 20 \\ \hline L_D \cong 2.7 \ A, \ V_{GEN} = 4.5 \ V, \ R_g = 1 \ \Omega & 12 & 20 \\ \hline L_D \cong 2.7 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega & 12 & 20 \\ \hline Rise Time & t_r & V_{DD} = 15 \ V, \ R_L = 5.6 \ \Omega & 12 & 20 \\ \hline Rise Time & t_r & U_{DD} = 15 \ V, \ R_L = 5.6 \ \Omega & 12 & 20 \\ \hline Rise Time & t_r & U_{DD} = 15 \ V, \ R_L = 5.6 \ \Omega & 12 & 20 \\ \hline Rise Time & t_r & U_{DD} = 15 \ V, \ R_L = 5.6 \ \Omega & 12 & 20 \\ \hline Rise Time & t_r & U_{DD} = 15 \ V, \ R_L = 5.6 \ \Omega & 10 & 15 \\ \hline Rise Time & t_r & U_{DD} = 15 \ V, \ R_L = 5.6 \ \Omega & 10 & 15 \\ \hline Rise Time & t_r & U_{DD} = 15 \ V, \ R_L = 5.6 \ \Omega & 10 & 15 \\ \hline Reverse Recover Dial Diode Characteristics & U & U_{DD} = 15 \ V, \ R_g = 1 \ \Omega & 10 & 15 \\ \hline Reverse Recover Y \ Time & t_r & I_S & T_C = 25 \ C & 1.4 \ A & 15 \\ \hline Reverse Recover Y \ Fall Time & t_r & I_S & I_S = 2.7 \ A, \ V_{GS} = 0 \ V & 0.8 & 1.2 \ V \\ \hline Reverse Recover Y \ Fall Time & t_r & I_F = 2.7 \ A, \ dI/dt = 100 \ A/\mus, \ T_J = 25 \ C & 5 \ 10 \ nC \\ \hline Reverse Recover Y \ Fall Time & t_a & ns \\ \hline \end{array}$	Gate Resistance	-	f = 1 MHz	0.8	4.4	8.8	Ω	
$ \begin{array}{ c c c c c c } \hline Rise Time & t_r & V_{DD} = 15 \ V, \ R_L = 5.6 \ \Omega & 12 & 20 \\ \hline I_D \cong 2.7 \ A, \ V_{GEN} = 4.5 \ V, \ R_g = 1 \ \Omega & 12 & 20 \\ \hline I_D \cong 2.7 \ A, \ V_{GEN} = 4.5 \ V, \ R_g = 1 \ \Omega & 12 & 20 \\ \hline I_D \cong 2.7 \ A, \ V_{GEN} = 4.5 \ V, \ R_g = 1 \ \Omega & 12 & 20 \\ \hline I_D \cong 2.7 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega & 12 & 20 \\ \hline I_D \cong 2.7 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega & 12 & 20 \\ \hline I_D \cong 2.7 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega & 10 & 15 \\ \hline I_D \cong 2.7 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega & 10 & 15 \\ \hline I_D \cong 2.7 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega & 10 & 15 \\ \hline I_D \cong 2.7 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega & 10 & 15 \\ \hline I_D \cong 2.7 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega & 10 & 15 \\ \hline I_D \cong 2.7 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega & 10 & 15 \\ \hline I_D \cong 2.7 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega & 10 & 15 \\ \hline I_D \cong 2.7 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega & 10 & 15 \\ \hline I_D \cong 2.7 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega & 10 & 15 \\ \hline I_D \cong 2.7 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega & 10 & 15 \\ \hline I_D \cong 2.7 \ A, \ V_{GEN} = 0 \ V & 0.8 \ 1.2 \ V \\ \hline I_D \cong 0 \ O I_D \ O I_$	Turn-On Delay Time	t _{d(on)}			12	20		
$\begin{tabular}{ c c c c c c } \hline Fall Time & t_f & & & & & & & & & & & & & & & & & & &$	Rise Time		V _{DD} = 15 V, R ₁ = 5.6 Ω		50	75		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Turn-Off Delay Time	t _{d(off)}	$I_D \cong 2.7 \text{ A}, V_{GEN} = 4.5 \text{ V}, R_g = 1 \Omega$		12	20		
$\begin{tabular}{ c c c c c c } \hline Turn-On Delay Time & t_d(on) & t_d(on) & V_{DD} = 15 \ V, \ R_L = 5.6 \ \Omega & 12 & 20 & I_D = 2.7 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega & 10 & 15 & I0 & I10 & I5 & I5 & I10 & I5 & I10 & I5 & I5 & I5 & I10 & I5 & I5 & I5 & I10 & I5 & I$	Fall Time	t _f			22	35		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Turn-On Delay Time	t _{d(on)}			5	10	ns	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Rise Time		$V_{DD} = 15 \text{ V}, \text{ R}_{1} = 5.6 \Omega$		12	20	-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Turn-Off Delay Time	t _{d(off)}	$I_D \cong 2.7 \text{ A}, V_{GEN} = 10 \text{ V}, \text{ R}_g = 1 \Omega$		10	15		
$\begin{array}{c c c c c c c c c } \hline Continuous Source-Drain Diode Current & I_S & T_C = 25 \ ^{\circ}C & & 1.4 & \\ \hline Pulse Diode Forward Current & I_{SM} & & 15 & \\ \hline Body Diode Voltage & V_{SD} & I_S = 2.7 \ A, \ V_{GS} = 0 \ V & 0.8 & 1.2 & V \\ \hline Body Diode Reverse Recovery Time & t_{rr} & & 10 & 20 & ns \\ \hline Body Diode Reverse Recovery Charge & Q_{rr} & & I_F = 2.7 \ A, \ dI/dt = 100 \ A/\mu s, \ T_J = 25 \ ^{\circ}C & 5 & 10 & nC \\ \hline Reverse Recovery Fall Time & t_a & & & & \\ \hline \end{array}$	Fall Time				5	10		
Pulse Diode Forward CurrentI I SMI SABody Diode VoltageV SDI S = 2.7 A, V GS = 0 V0.81.2VBody Diode Reverse Recovery Time t_{rr} 1020nsBody Diode Reverse Recovery ChargeQ rrI F = 2.7 A, dI/dt = 100 A/µs, T J = 25 °C510nCReverse Recovery Fall Timet aI F100 A/µs, T J = 25 °C510nC	Drain-Source Body Diode Characteristic	s					1	
Pulse Diode Forward CurrentI I SMI S15Body Diode VoltageV SDI S $I_S = 2.7 \text{ A}, V_{GS} = 0 \text{ V}$ 0.81.2VBody Diode Reverse Recovery Time t_{rr} 1020nsBody Diode Reverse Recovery Charge Q_{rr} $I_F = 2.7 \text{ A}, dI/dt = 100 \text{ A/}\mus, T_J = 25 ^{\circ}C$ 510nCReverse Recovery Fall Time t_a rr rr rr rr rr	Continuous Source-Drain Diode Current	ا _S	T _C = 25 °C			1.4	٨	
	Pulse Diode Forward Current	I _{SM}				15	A	
	Body Diode Voltage	V _{SD}	$I_{\rm S} = 2.7 {\rm A}, {\rm V}_{\rm GS} = 0 {\rm V}$		0.8	1.2	V	
Reverse Recovery Fall Time t_a $I_F = 2.7 \text{ A}, dI/dt = 100 \text{ A/}\mu\text{s}, I_J = 25 \text{ °C}$ 6 ns	Body Diode Reverse Recovery Time				10	20	ns	
Reverse Recovery Fall Time t _a 6	Body Diode Reverse Recovery Charge	Q _{rr}			5	10	nC	
ns ns	Reverse Recovery Fall Time	ta	$I_F = 2.7 \text{ A}, \text{ al/at} = 100 \text{ A/}\mu\text{s}, I_J = 25 \text{ °C}$		6		- ns	
	Reverse Recovery Rise Time	t _b			4			

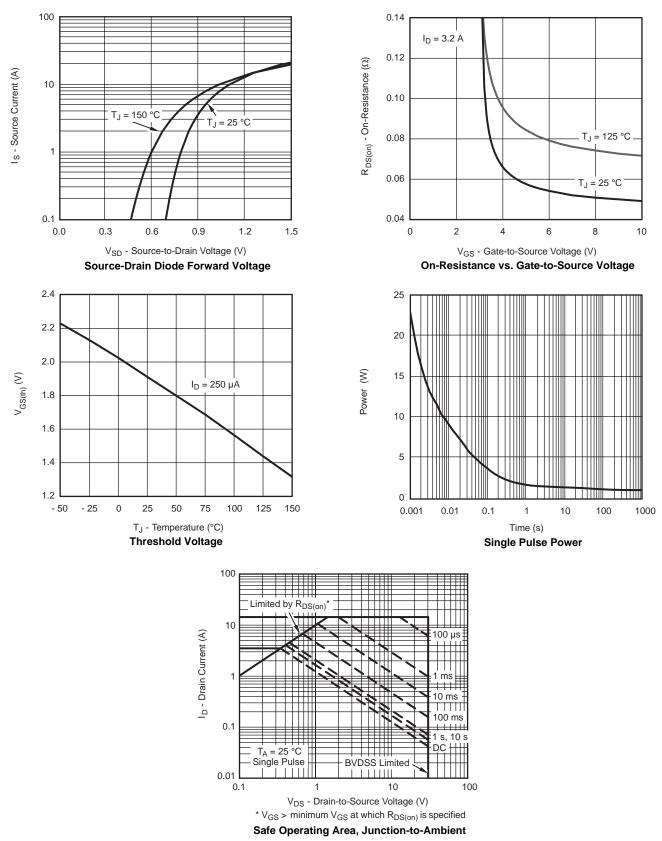
Notes:

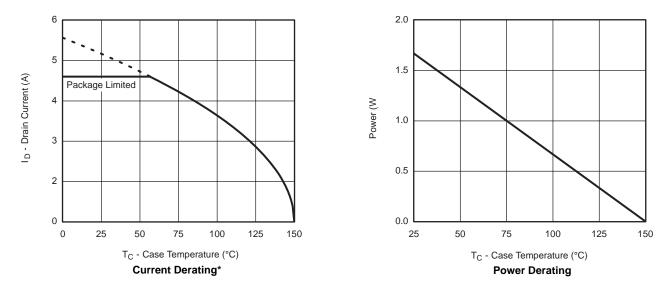

a. Pulse test; pulse width \leq 300 $\mu s,$ duty cycle \leq 2 %

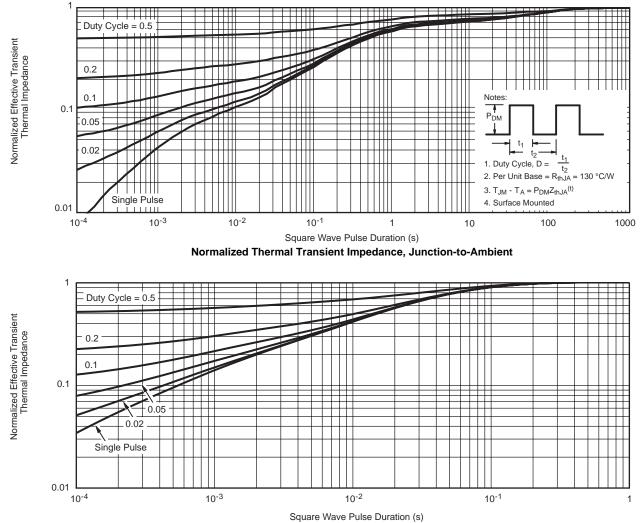

b. Guaranteed by design, not subject to production testing.


Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

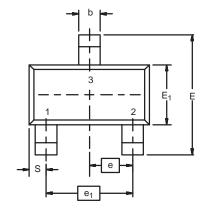
VBsemi Bsemi.com

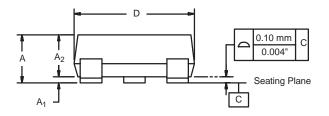


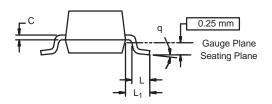




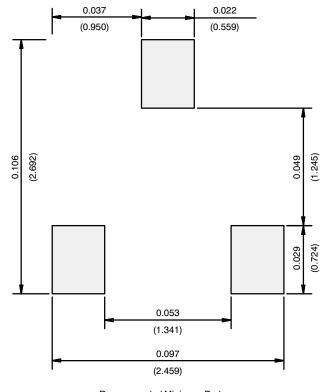
* The power dissipation P_D is based on $T_{J(max)}$ = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.






Normalized Thermal Transient Impedance, Junction-to-Foot

SOT-23 (TO-236): 3-LEAD



Dim	MILLIN	IETERS	INCHES			
	Min	Max	Min	Мах		
А	0.89	1.12	0.035	0.044		
A ₁	0.01	0.10	0.0004	0.004		
A ₂	0.88	1.02	0.0346	0.040		
b	0.35	0.50	0.014	0.020		
C	0.085	0.18	0.003	0.007		
D	2.80	3.04	0.110	0.120		
E	2.10	2.64	0.083	0.104		
E ₁	1.20	1.40	0.047	0.055		
е	0.95 BSC		0.0374 Ref			
e ₁	1.90 BSC		0.074	0.0748 Ref		
L	0.40	0.60	0.016	0.024		
L ₁	0.64 Ref		0.64 Ref		0.025	5 Ref
S	0.50 Ref		0.020) Ref		
q	3°	8°	3°	8°		

AM2322N-T1-PF-VB

RECOMMENDED MINIMUM PADS FOR SOT-23

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

Disclaimer

All products due to improve reliability, function or design or for other reasons, product specifications and data are subject to change without notice.

Taiwan VBsemi Electronics Co., Ltd., branches, agents, employees, and all persons acting on its or their representatives (collectively, the "Taiwan VBsemi"), assumes no responsibility for any errors, inaccuracies or incomplete data contained in the table or any other any disclosure of any information related to the product.(www.VBsemi.com)

Taiwan VBsemi makes no guarantee, representation or warranty on the product for any particular purpose of any goods or continuous production. To the maximum extent permitted by applicable law on Taiwan VBsemi relinquished: (1) any application and all liability arising out of or use of any products; (2) any and all liability, including but not limited to special, consequential damages or incidental; (3) any and all implied warranties, including a particular purpose, non-infringement and merchantability guarantee.

Statement on certain types of applications are based on knowledge of the product is often used in a typical application of the general product VBsemi Taiwan demand that the Taiwan VBsemi of. Statement on whether the product is suitable for a particular application is non-binding. It is the customer's responsibility to verify specific product features in the products described in the specification is appropriate for use in a particular application. Parameter data sheets and technical specifications can be provided may vary depending on the application and performance over time. All operating parameters, including typical parameters must be made by customer's technical experts validated for each customer application. Product specifications do not expand or modify Taiwan VBsemi purchasing terms and conditions, including but not limited to warranty herein.

Unless expressly stated in writing, Taiwan VBsemi products are not intended for use in medical, life saving, or life sustaining applications or any other application. Wherein VBsemi product failure could lead to personal injury or death, use or sale of products used in Taiwan VBsemi such applications using client did not express their own risk. Contact your authorized Taiwan VBsemi people who are related to product design applications and other terms and conditions in writing.

The information provided in this document and the company's products without a license, express or implied, by estoppel or otherwise, to any intellectual property rights granted to the VBsemi act or document. Product names and trademarks referred to herein are trademarks of their respective representatives will be all.

Material Category Policy

Taiwan VBsemi Electronics Co., Ltd., hereby certify that all of the products are determined to be RoHS compliant and meets the definition of restrictions under Directive of the European Parliament 2011/65 / EU, 2011 Nian. 6. 8 Ri Yue restrict the use of certain hazardous substances in electrical and electronic equipment (EEE) - modification, unless otherwise specified as inconsistent.(www.VBsemi.com)

Please note that some documents may still refer to Taiwan VBsemi RoHS Directive 2002/95 / EC. We confirm that all products identified as consistent with the Directive 2002/95 / EC European Directive 2011/65 /.

Taiwan VBsemi Electronics Co., Ltd. hereby certify that all of its products comply identified as halogen-free halogen-free standards required by the JEDEC JS709A. Please note that some Taiwanese VBsemi documents still refer to the definition of IEC 61249-2-21, and we are sure that all products conform to confirm compliance with IEC 61249-2-21 standard level JS709A.