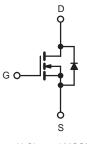


NIF5002NT1G-VB Datasheet N-Channel 60-V (D-S) MOSFET

PRODUC	CT SUMMARY		
V _{DS} (V)	R _{DS(on)} (Ω)	I _D (A) ^a	Q _g (Typ.)
<u> </u>	0.076 at V _{GS} = 10 V	4.5	10 nC
60	0.085 at V _{GS} = 4.5 V	3.5	TOTIC

FEATURES

• Halogen-free


APPLICATIONS

• TrenchFET[®] Power MOSFET

· Load Switches for Portable Devices

N-Channel MOSFET

Parameter		Symbol	Limit	Unit
Drain-Source Voltage		V _{DS}	60	V
Gate-Source Voltage		V _{GS}	± 20	v
	T _C = 25 °C		4.5	
Continuous Drain Current (T _{.1} = 150 °C)	T _C = 70 °C		3.2 ^a	
	T _A = 25 °C	טי	2.7	
	T _A = 70 °C	1	2.3	A
Pulsed Drain Current		I _{DM}	20	
Continuous Source-Drain Diode Current	T _C = 25 °C	I _S	3.2	
Continuous Source-Drain Diode Current	T _A = 25 °C	'5	2.1 ^{b, c}	
	T _C = 25 °C		4.0	
Maximum Power Dissipation	T _C = 70 °C	P _D	3.0	w
	T _A = 25 °C		2.5 ^{b, c}	VV
	T _A = 70 °C	1	1.6 ^{b, c}	
Operating Junction and Storage Temperatur	e Range	T _J , T _{stg}	- 55 to 150	0°C
Soldering Recommendations (Peak Temper	ature) ^{e, f}		260	U U

THERMAL RESISTANCE BATINGS

	intao					
Parameter		Symbol	Typical	Maximum	Unit	
Maximum Junction-to-Ambient ^{a, c, d}	t ≤ 5 s	R _{thJA}	40	50	°C/W	
Maximum Junction-to-Foot (Drain)	Steady State	R _{thJF}	15	20	°C/vv	

Notes:

a. Package limited, T_C = 25 °C.
b. Surface Mounted on 1" x 1" FR4 board.

c. t = 10 s.

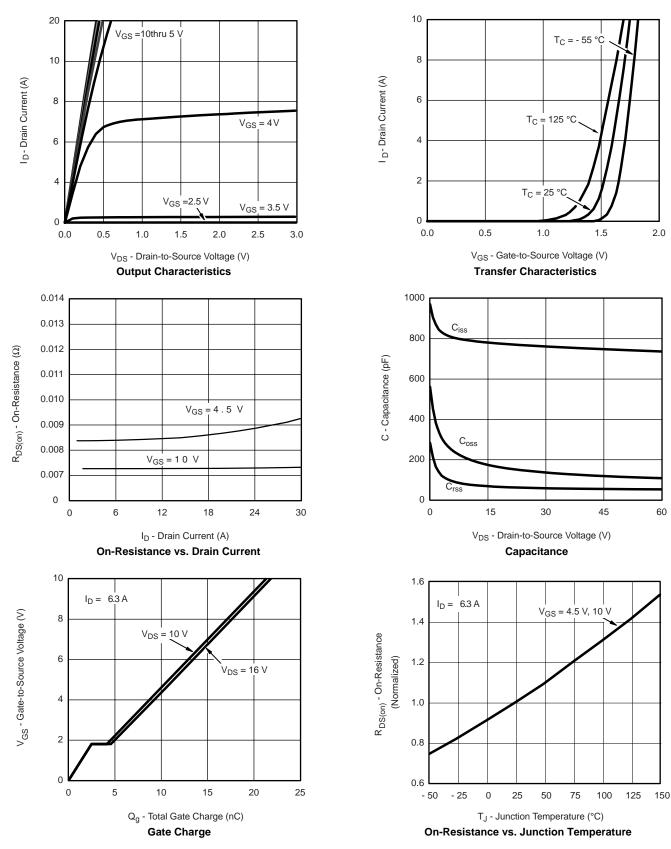
d. Maximum under Steady State conditions is 95 °C/W.

e. See Reliability Manual for profile. The ChipFET is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.

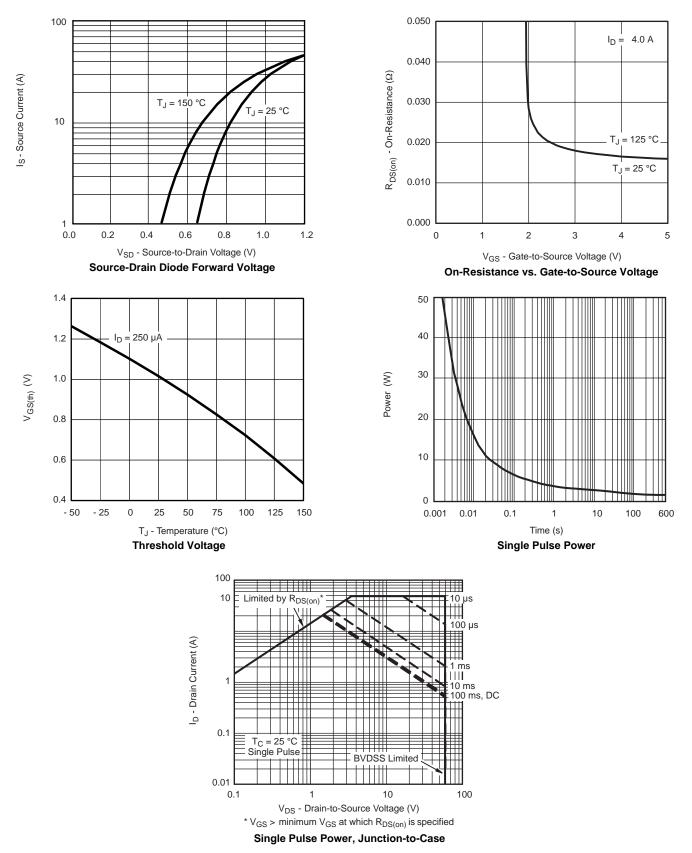
f. Rework Conditions: manual soldering with a soldering iron is not recommended for leadless components.

Parameter Symbol Static Drain-Source Breakdown Voltage V _{DS} V _{DS} Temperature Coefficient ΔV _{DS} /T V _{GS(th)} Temperature Coefficient ΔV _{GS(th)} / Gate-Source Threshold Voltage V _{GS(th)} / Gate-Source Leakage I _{GSS} Zero Gate Voltage Drain Current I _{DSS} On-State Drain Current ^a I _{D(on)} Drain-Source On-State Resistance ^a 9ts Dynamic ^b Input Capacitance Input Capacitance C _{oss} Reverse Transfer Capacitance C _{rss} Total Gate Charge Q _g Gate-Source Charge Q _{gd} Gate Resistance R _g Turn-on Delay Time t _{d(on)} Rise Time t _r Turn-Off Delay Time t _{d(off)}	V _{GS} = 0 V, I _D = 250 μA	Min. 60 1.0 30	Typ. 25 - 4.0 0.076 0.085 45 810 120 100 22 10	Max. 2.5 ± 100 1 10 	Unit V mV/°C V nA μA A Ω S
Drain-Source Breakdown Voltage V_{DS} V_{DS} Temperature Coefficient $\Delta V_{DS}/T$ $V_{GS(th)}$ Temperature Coefficient $\Delta V_{GS(th)}/T$ Gate-Source Threshold Voltage $V_{GS(th)}/T$ Gate-Source Leakage I_{GSS} Zero Gate Voltage Drain Current I_{DSS} On-State Drain Current ^a $I_{D(on)}$ Drain-Source On-State Resistance ^a $R_{DS(on)}$ Forward Transconductance ^a g_{fs} Dynamic ^b C_{iss} Input Capacitance C_{oss} Reverse Transfer Capacitance C_{rss} Total Gate Charge Q_{gd} Gate-Source Charge Q_{gd} Gate Resistance R_g Turn-on Delay Time $t_d(on)$ Rise Time t_r Turn-Off Delay Time $t_d(off)$ Fall Time t_f	$\begin{array}{c c} J \\ \hline J \hline J$	1.0	- 4.0 - 4.0 0.076 0.076 0.085 45 45 810 120 100 22	± 100 1 10 	mV/°C V nA μA A Ω S
V_{DS} Temperature Coefficient $\Delta V_{DS}/T$ $V_{GS(th)}$ Temperature Coefficient $\Delta V_{GS(th)}/T$ Gate-Source Threshold Voltage $V_{GS(th)}/T$ Gate-Source Leakage I_{GSS} Zero Gate Voltage Drain Current I_{DSS} On-State Drain Current ^a $I_{D(on)}$ Drain-Source On-State Resistance ^a $\mathcal{R}_{DS(on)}$ Forward Transconductance ^a \mathcal{G}_{tss} Output Capacitance C_{css} Output Capacitance C_{css} Total Gate Charge Q_{gs} Gate-Source Charge Q_{gd} Gate Resistance R_g Turn-on Delay Time $t_d(on)$ Rise Time t_r Turn-Off Delay Time $t_d(off)$ Fall Time t_f	$\begin{array}{c c} J \\ \hline J \hline J$	1.0	- 4.0 - 4.0 0.076 0.076 0.085 45 45 810 120 100 22	± 100 1 10 	mV/°C V nA μA A Ω S
$V_{GS(th)}$ Temperature Coefficient $\Delta V_{GS(th)}$ Gate-Source Threshold Voltage $V_{GS(th)}$ Gate-Source Leakage I_{GSS} Zero Gate Voltage Drain Current I_{DSS} On-State Drain Current ^a $I_{D(on)}$ Drain-Source On-State Resistance ^a $R_{DS(on)}$ Forward Transconductance ^a g_{fs} Dynamic ^b C_{iss} Output Capacitance C_{oss} Reverse Transfer Capacitance C_{rss} Total Gate Charge Q_{gs} Gate-Source Charge Q_{gd} Gate Resistance R_g Turn-on Delay Time $t_d(on)$ Rise Time t_r Turn-Off Delay Time $t_d(off)$ Fall Time t_f	$\begin{split} & I_{D} = 250 \; \muA \\ \hline & V_{DS} = V_{GS} \;, \; I_{D} = 250 \; \muA \\ \hline & V_{DS} = 0 \; V, \; V_{GS} = \pm 12 \; V \\ \hline & V_{DS} = 60 \; V, \; V_{GS} = 0 \; V \\ \hline & V_{DS} = 60 \; V, \; V_{GS} = 0 \; V, \; T_{J} = 55 \; ^\circ C \\ \hline & V_{DS} \ge 5 \; V, \; V_{GS} = 4.5 \; V \\ \hline & V_{GS} = 10 \; V, \; I_{D} = 4.0 \; A \\ \hline & V_{GS} = 4.5 \; V, \; I_{D} = 3.0 \; A \\ \hline & V_{DS} = 10 \; V, \; I_{D} = 4.0 \; A \\ \hline & V_{DS} = 30 \; V, \; V_{GS} = 0 \; V, \; f = 1 \; MHz \\ \hline & V_{DS} = 30 \; V, \; V_{GS} = 10 \; V, \; I_{D} = 4.0 \; A \\ \hline \end{array}$		- 4.0 - 4.0 0.076 0.076 0.085 45 45 810 120 100 22	± 100 1 10 	V nA μA A Ω S
Gate-Source Threshold Voltage V _{GS(th)} Gate-Source Leakage I _{GSS} Zero Gate Voltage Drain Current I _{DSS} On-State Drain Current ^a I _{D(on)} Drain-Source On-State Resistance ^a R _{DS(on)} Forward Transconductance ^a 9fs Dynamic ^b Unut Capacitance Input Capacitance C _{iss} Output Capacitance C _{oss} Reverse Transfer Capacitance C _{rss} Total Gate Charge Q _g Gate-Source Charge Q _{gd} Gate Resistance R _g Turn-on Delay Time t _{d(on)} Rise Time t _r Turn-Off Delay Time t _{d(off)} Fall Time t _f	$\begin{array}{c c} V_{DS} = V_{GS} \ , \ I_D = 250 \ \mu A \\ \hline V_{DS} = 0 \ V, \ V_{GS} = \pm 12 \ V \\ \hline V_{DS} = 60 \ V, \ V_{GS} = 0 \ V \\ \hline V_{DS} = 60 \ V, \ V_{GS} = 0 \ V, \ T_J = 55 \ ^{\circ}C \\ \hline V_{DS} \ge 5 \ V, \ V_{GS} = 4.5 \ V \\ \hline V_{GS} = 10 \ V, \ I_D = 4.0 \ A \\ \hline V_{GS} = 4.5 \ V, \ I_D = 3.0 \ A \\ \hline V_{DS} = 10 \ V, \ I_D = 4.0 \ A \\ \hline \end{array}$		0.076 0.085 45 810 120 100 22	± 100 1 10 	V nA μA A Ω S
Gate-Source LeakageIGSSZero Gate Voltage Drain CurrentIDSSOn-State Drain CurrentaID(on)Drain-Source On-State ResistanceaRDS(on)Forward Transconductancea9fsDynamicbInput CapacitanceOutput CapacitanceCossReverse Transfer CapacitanceCrssTotal Gate ChargeQgGate-Source ChargeQgGate ResistanceRgTurn-on Delay Timetd(on)Rise TimetrTurn-Off Delay Timetd(off)Fall Timetf	$V_{DS} = 0 V, V_{GS} = \pm 12 V$ $V_{DS} = 60 V, V_{GS} = 0 V$ $V_{DS} = 60 V, V_{GS} = 0 V, T_J = 55 °C$ $V_{DS} \ge 5 V, V_{GS} = 4.5 V$ $V_{GS} = 10 V, I_D = 4.0 A$ $V_{GS} = 4.5 V, I_D = 3.0 A$ $V_{DS} = 10 V, I_D = 4.0 A$		0.085 45 810 120 100 22	± 100 1 10 	nA μA A S
Zero Gate Voltage Drain Current I_{DSS} On-State Drain Currenta $I_{D(on)}$ Drain-Source On-State Resistancea $R_{DS(on)}$ Forward Transconductancea g_{fs} Dynamicb I_{Dupt} Input Capacitance C_{oss} Output Capacitance C_{oss} Reverse Transfer Capacitance C_{rss} Total Gate Charge Q_{gs} Gate-Source Charge Q_{gd} Gate Resistance R_g Turn-on Delay Time $t_d(on)$ Rise Time t_r Turn-Off Delay Time $t_d(off)$ Fall Time t_f	$V_{DS} = 60 V, V_{GS} = 0 V$ $V_{DS} = 60 V, V_{GS} = 0 V, T_{J} = 55 °C$ $V_{DS} \ge 5 V, V_{GS} = 4.5 V$ $V_{GS} = 10 V, I_{D} = 4.0 A$ $V_{GS} = 4.5 V, I_{D} = 3.0 A$ $V_{DS} = 10 V, I_{D} = 4.0 A$ $V_{DS} = 10 V, I_{D} = 4.0 A$	30	0.085 45 810 120 100 22	1 10	μA A Ω S
On-State Drain Current ^a ID(on)Drain-Source On-State Resistance ^a RDS(on)Forward Transconductance ^a 9fsDynamic ^b Input CapacitanceInput CapacitanceCossOutput CapacitanceCossReverse Transfer CapacitanceCrssTotal Gate ChargeQgGate-Source ChargeQgGate ResistanceRgTurn-on Delay Timetd(on)Rise TimetrTurn-Off Delay Timetd(off)Fall Timetf	$V_{DS} = 60 \text{ V}, V_{GS} = 0 \text{ V}, T_J = 55 \text{ °C}$ $V_{DS} \ge 5 \text{ V}, V_{GS} = 4.5 \text{ V}$ $V_{GS} = 10 \text{ V}, I_D = 4.0 \text{ A}$ $V_{GS} = 4.5 \text{ V}, I_D = 3.0 \text{ A}$ $V_{DS} = 10 \text{ V}, I_D = 4.0 \text{ A}$ $V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$ $V_{DS} = 30 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 4.0 \text{ A}$	30	0.085 45 810 120 100 22	10	A Ω S
On-State Drain Current ^a ID(on)Drain-Source On-State Resistance ^a RDS(on)Forward Transconductance ^a 9fsDynamic ^b Input CapacitanceInput CapacitanceCossOutput CapacitanceCossReverse Transfer CapacitanceCrssTotal Gate ChargeQgGate-Source ChargeQgGate ResistanceRgTurn-on Delay Timetd(on)Rise TimetrTurn-Off Delay Timetd(off)Fall Timetf	$V_{DS} \ge 5 \text{ V}, V_{GS} = 4.5 \text{ V}$ $V_{GS} = 10 \text{ V}, I_D = 4.0 \text{ A}$ $V_{GS} = 4.5 \text{ V}, I_D = 3.0 \text{ A}$ $V_{DS} = 10 \text{ V}, I_D = 4.0 \text{ A}$ $V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$ $V_{DS} = 30 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 4.0 \text{ A}$	30	0.085 45 810 120 100 22	33	A Ω S
Drain-Source On-State Resistance ^a $R_{DS(on)}$ Forward Transconductance ^a g_{fs} Dynamic^b Input Capacitance C_{iss} Output Capacitance C_{oss} Reverse Transfer Capacitance C_{rss} Total Gate Charge Q_{gs} Gate-Source Charge Q_{gd} Gate Resistance R_g Turn-on Delay Time $t_d(on)$ Rise Time t_r Turn-Off Delay Time $t_d(off)$ Fall Time t_f	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 4.0 \text{ A}$ $V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 3.0 \text{ A}$ $V_{DS} = 10 \text{ V}, \text{ I}_{D} = 4.0 \text{ A}$ $V_{DS} = 30 \text{ V}, \text{ V}_{GS} = 0 \text{ V}, \text{ f} = 1 \text{ MHz}$ $V_{DS} = 30 \text{ V}, \text{ V}_{GS} = 10 \text{ V}, \text{ I}_{D} = 4.0 \text{ A}$	30	0.085 45 810 120 100 22		Ω S
Forward Transconductance ^a 9ts Dynamic ^b Input Capacitance C _{iss} Output Capacitance C _{oss} Reverse Transfer Capacitance C _{rss} Total Gate Charge Qg Gate-Source Charge Qgd Gate Resistance Rg Turn-on Delay Time td(on) Rise Time tr Turn-Off Delay Time td(off) Fall Time tf	$V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 3.0 \text{ A}$ $V_{DS} = 10 \text{ V}, \text{ I}_{D} = 4.0 \text{ A}$ $V_{DS} = 30 \text{ V}, \text{ V}_{GS} = 0 \text{ V}, \text{ f} = 1 \text{ MHz}$ $V_{DS} = 30 \text{ V}, \text{ V}_{GS} = 10 \text{ V}, \text{ I}_{D} = 4.0 \text{ A}$		0.085 45 810 120 100 22		S
Forward Transconductance ^a 9fsDynamic ^b CissInput CapacitanceCossOutput CapacitanceCossReverse Transfer CapacitanceCrssTotal Gate ChargeQgGate-Source ChargeQgdGate ResistanceRgTurn-on Delay Timetd(on)Rise TimetrTurn-Off Delay Timetd(off)Fall Timetf	$V_{DS} = 10 \text{ V}, \text{ I}_{D} = 4.0 \text{ A}$ $V_{DS} = 30 \text{ V}, \text{ V}_{GS} = 0 \text{ V}, \text{ f} = 1 \text{ MHz}$ $V_{DS} = 30 \text{ V}, \text{ V}_{GS} = 10 \text{ V}, \text{ I}_{D} = 4.0 \text{ A}$		45 810 120 100 22	2.5 ± 100 1 10	S
Dynamic ^b Input Capacitance C _{iss} Output Capacitance C _{oss} Reverse Transfer Capacitance C _{rss} Total Gate Charge Qg Gate-Source Charge Qgd Gate Resistance Rg Turn-on Delay Time td(on) Rise Time tr Turn-Off Delay Time td(off) Fall Time tf	$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
$\begin{tabular}{ c c c c } \hline Input Capacitance & C_{iss} \\ \hline Output Capacitance & C_{oss} \\ \hline Reverse Transfer Capacitance & C_{rss} \\ \hline Total Gate Charge & Q_g \\ \hline Gate-Source Charge & Q_{gs} \\ \hline Gate-Drain Charge & Q_{gd} \\ \hline Gate Resistance & R_g \\ \hline Turn-on Delay Time & $t_{d(on)}$ \\ \hline Rise Time & t_r \\ \hline Turn-Off Delay Time & $t_{d(off)}$ \\ \hline Fall Time & t_f \\ \hline \end{tabular}$	$V_{DS} = 30 \text{ V}, \text{ V}_{GS} = 10 \text{ V}, \text{ I}_{D} = 4.0 \text{ A}$		120 100 22		pF
Output Capacitance C _{oss} Reverse Transfer Capacitance C _{rss} Total Gate Charge Qg Gate-Source Charge Qgd Gate-Drain Charge Qgd Gate Resistance Rg Turn-on Delay Time td(on) Rise Time tr Turn-Off Delay Time td(off) Fall Time tf	$V_{DS} = 30 \text{ V}, \text{ V}_{GS} = 10 \text{ V}, \text{ I}_{D} = 4.0 \text{ A}$		120 100 22		pF
Reverse Transfer Capacitance C _{rss} Total Gate Charge Qg Gate-Source Charge Qgd Gate-Drain Charge Qgd Gate Resistance Rg Turn-on Delay Time td(on) Rise Time tr Turn-Off Delay Time td(off) Fall Time tf	$V_{DS} = 30 \text{ V}, \text{ V}_{GS} = 10 \text{ V}, \text{ I}_{D} = 4.0 \text{ A}$		100 22		pF
Total Gate ChargeQgGate-Source ChargeQgsGate-Drain ChargeQgdGate ResistanceRgTurn-on Delay Timetd(on)Rise TimetrTurn-Off Delay Timetd(off)Fall Timetf			22		
Gate-Source Charge Q _{gs} Gate-Drain Charge Q _{gd} Gate Resistance Rg Turn-on Delay Time t _{d(on)} Rise Time t _r Turn-Off Delay Time t _{d(off)} Fall Time t _f			_		
Gate-Source Charge Q _{gs} Gate-Drain Charge Q _{gd} Gate Resistance Rg Turn-on Delay Time t _{d(on)} Rise Time t _r Turn-Off Delay Time t _{d(off)} Fall Time t _f	V_{DS} = 30 V, V_{GS} = 4.5 V, I_{D} = 3.0 A		10	15	1
Gate-Drain ChargeQgdGate ResistanceRgTurn-on Delay Timetd(on)Rise TimetrTurn-Off Delay Timetd(off)Fall Timetf	V_{DS} = 30 V, V_{GS} = 4.5 V, I_{D} = 3.0 A				nC
$\begin{tabular}{ c c c c c } \hline Gate Resistance & R_g \\ \hline Turn-on Delay Time & t_{d(on)} \\ \hline Rise Time & t_r \\ \hline Turn-Off Delay Time & t_{d(off)} \\ \hline Fall Time & t_f \\ \hline \end{tabular}$			2.5		
$\begin{tabular}{ c c c c } \hline Turn-on Delay Time & $t_{d(on)}$ \\ \hline Rise Time & t_{r} \\ \hline Turn-Off Delay Time & $t_{d(off)}$ \\ \hline Fall Time & t_{f} \\ \hline \end{tabular}$			1.7		
Rise Time tr Turn-Off Delay Time td(off) Fall Time tf	f = 1 MHz		2.4		Ω
Turn-Off Delay Time td(off) Fall Time tf			15	25	
Fall Time t _f	V_{DD} =30V, , R_L = 1.5 Ω		10	15	- - ns -
	$\rm I_D \cong 4.0$ A, $\rm V_{GEN}$ = 4.5 V, $\rm R_g$ = 1 Ω		35	55	
			12	20	
Turn-on Delay Time t _{d(on)}			10	15	
Rise Time t _r	V_{DD} = 30V , R_L = 1.5 Ω		12	20	
Turn-Off Delay Time t _{d(off)}	$\text{I}_\text{D}\cong 4.0$ A, V_GEN = 10 V, R_g = 1 Ω		25	40	
Fall Time t _f			10	15	
Drain-Source Body Diode Characteristics			•		
Continuous Source-Drain Diode Current	T _C = 25 °C			7.2	A
Pulse Diode Forward Current I _{SM}				30	~
Body Diode Voltage V _{SD}	$I_{\rm S} = 4.0$ A, $V_{\rm GS} = 0$ V		0.8	1.2	V
Body Diode Reverse Recovery Time t _{rr}			20	40	ns
Body Diode Reverse Recovery Charge Q _{rr}	I _F = 4.0 A, dl/dt = 100 A/μs, T _J = 25 °C		10	20	nC
Reverse Recovery Fall Time t _a	$_{\rm F} = \pm 0.7$, $u_{\rm F} u_{\rm F} = 100.7$, $\mu_{\rm S}$, $1j = 20.0$		10		00
Reverse Recovery Rise Time t _b			10		ns

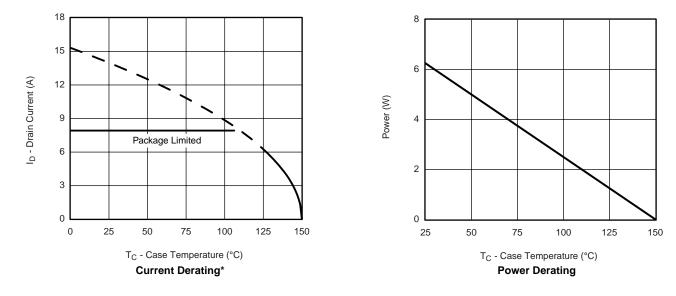
a. Pulse test; pulse width \leq 300 $\mu s,$ duty cycle \leq 2 %


b. Guaranteed by design, not subject to production testing.

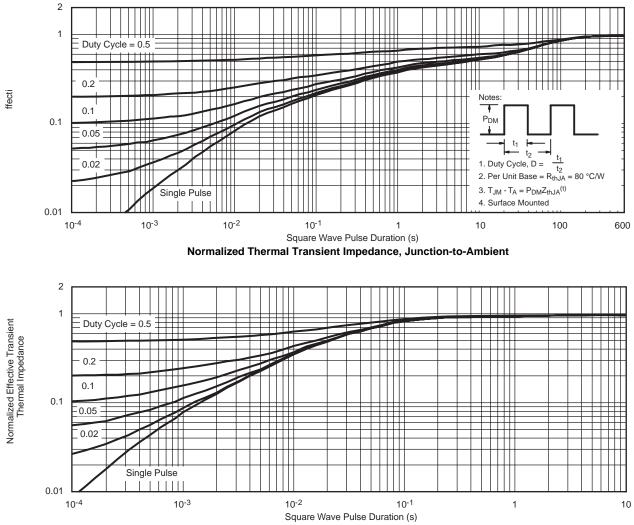
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


semi

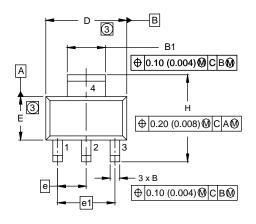
www.VBsemi.com

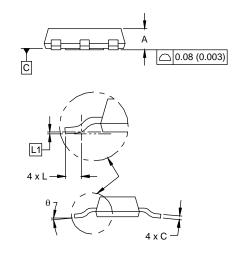

服务热线:400-655-8788

mi


www.VBsemi.com

* The power dissipation P_D is based on $T_{J(max)}$ = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.





Normalized Thermal Transient Impedance, Junction-to-Foot

SOT-223 (HIGH VOLTAGE)

	MILLIMETERS		INCHES		
DIM.	MIN.	MAX.	MIN.	MAX.	
А	1.55	1.80	0.061	0.071	
В	0.65	0.85	0.026	0.033	
B1	2.95	3.15	0.116	0.124	
С	0.25	0.35	0.010	0.014	
D	6.30	6.70	0.248	0.264	
E	3.30	3.70	0.130	0.146	
е	2.30 BSC		0.090	5 BSC	
e1	4.60 BSC		0.181 BSC		
Н	6.71	7.29	0.264	0.287	
L	0.91	-	0.036	-	
L1	0.061 BSC		0.0024 BSC		
θ	-	10'	-	10'	

Notes

1. Dimensioning and tolerancing per ASME Y14.5M-1994.

2. Dimensions are shown in millimeters (inches).

3. Dimension do not include mold flash.

4. Outline conforms to JEDEC outline TO-261AA.

Disclaimer

All products due to improve reliability, function or design or for other reasons, product specifications and data are subject to change without notice.

Taiwan VBsemi Electronics Co., Ltd., branches, agents, employees, and all persons acting on its or their representatives (collectively, the "Taiwan VBsemi"), assumes no responsibility for any errors, inaccuracies or incomplete data contained in the table or any other any disclosure of any information related to the product.(www.VBsemi.com)

Taiwan VBsemi makes no guarantee, representation or warranty on the product for any particular purpose of any goods or continuous production. To the maximum extent permitted by applicable law on Taiwan VBsemi relinquished: (1) any application and all liability arising out of or use of any products; (2) any and all liability, including but not limited to special, consequential damages or incidental; (3) any and all implied warranties, including a particular purpose, non-infringement and merchantability guarantee.

Statement on certain types of applications are based on knowledge of the product is often used in a typical application of the general product VBsemi Taiwan demand that the Taiwan VBsemi of. Statement on whether the product is suitable for a particular application is non-binding. It is the customer's responsibility to verify specific product features in the products described in the specification is appropriate for use in a particular application. Parameter data sheets and technical specifications can be provided may vary depending on the application and performance over time. All operating parameters, including typical parameters must be made by customer's technical experts validated for each customer application. Product specifications do not expand or modify Taiwan VBsemi purchasing terms and conditions, including but not limited to warranty herein.

Unless expressly stated in writing, Taiwan VBsemi products are not intended for use in medical, life saving, or life sustaining applications or any other application. Wherein VBsemi product failure could lead to personal injury or death, use or sale of products used in Taiwan VBsemi such applications using client did not express their own risk. Contact your authorized Taiwan VBsemi people who are related to product design applications and other terms and conditions in writing.

The information provided in this document and the company's products without a license, express or implied, by estoppel or otherwise, to any intellectual property rights granted to the VBsemi act or document. Product names and trademarks referred to herein are trademarks of their respective representatives will be all.

Material Category Policy

Taiwan VBsemi Electronics Co., Ltd., hereby certify that all of the products are determined to be RoHS compliant and meets the definition of restrictions under Directive of the European Parliament 2011/65 / EU, 2011 Nian. 6. 8 Ri Yue restrict the use of certain hazardous substances in electrical and electronic equipment (EEE) - modification, unless otherwise specified as inconsistent.(www.VBsemi.com)

Please note that some documents may still refer to Taiwan VBsemi RoHS Directive 2002/95 / EC. We confirm that all products identified as consistent with the Directive 2002/95 / EC European Directive 2011/65 /.

Taiwan VBsemi Electronics Co., Ltd. hereby certify that all of its products comply identified as halogen-free halogen-free standards required by the JEDEC JS709A. Please note that some Taiwanese VBsemi documents still refer to the definition of IEC 61249-2-21, and we are sure that all products conform to confirm compliance with IEC 61249-2-21 standard level JS709A.